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Brief notes from Lecture 4.
Inner product spaces. Let us briefly recall the inner products in RN

and CN .
We start with the real case and write V = RN . If a = (a0, a1, ..., aN−1),

b = (b0, b1, ..., bN−1), where aj, bj ∈ R, then the inner product (dot product)
of a and b is

(a, b) = a · b =
N−1∑
j=0

ajbj, a, b ∈ V.

The important properties are

(i) (λa + µb, c) = λ(a, c) + µ(b, c), λ, µ ∈ R, a, b, c ∈ V ;

(ii) (b, a) = (a, b), a, b ∈ V ;

(iii) (a, a) =
N−1∑
j=0

a2
j = |a|2 > 0 if a ∈ V, a 6= 0.

In the complex case, a = (a0, a1, ..., aN−1), b = (b0, b1, ..., bN−1), where
aj, bj ∈ C, the complex inner product is

(a, b) =
N−1∑
j=0

ajbj, a, b ∈ V,

where this time V = CN . Properties (i)-(iii) become

(i) (λa + µb, c) = λ(a, c) + µ(b, c), λ, µ ∈ C, a, b, c ∈ V ;

(ii) (b, a) = (a, b), a, b ∈ V ;

(iii) (a, a) =
N−1∑
j=0

|aj|2 = |a|2 > 0 if a ∈ V, a 6= 0.

Consider now

(f, g) :=
1

2π

∫ π

π

f(θ)g(θ) dθ, and ||f || = ||f ||2 =
√

(f, f). (1)

Clearly properties (i) and (ii), in the complex case, hold. (iii) also holds
if we only consider continuous functions. (f, g) is the inner product in the
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space L2(−π, π), the square integrable functions on the interval (−π, π). For
a general function in this space (iii) has to be interpreted to mean that f = 0
almost everywhere.

Two functions f and g (in L2(−π, π)) are orthogonal if (f, g) = 0. We
have seen before that for en(θ) = e2πinθ, we have

(en, em) =
1

2π

∫ π

π

e2πi(n−m)θdθ = δnm,

where the Kronecker symbol δnm equals 1 when n = m, and 0 otherwise. This
means that (en)∞n=−∞ is an orthonormal system. All functions are orthogonal:
(en, em) = 0 if n 6= m, and of unit norm (“length”): ||en|| = 1 for all n ∈ Z.
To explain this somewhat, we shall consider the following example. It is
really about the Fourier transform on ZN , which will be examined more
closely later on in the course.

A very fundamental example: Let N > 0 be an integer and ω a
complex number. Then 1 + ω + ω2 + ... + ωN−1 = (1− ωN)/(1− ω) if ω 6= 1
and = N for ω = 1. If also ωN = 1, we get

1

N
(1 + ωj + ω2

j + ... + ωN−1
j ) = δ0j,

where we have denoted by ωj the jth root of unity:

ωj = ωj,N := exp

{
j
2πi

N

}
, j = 0, 1, ..., N − 1.

Denote by ej = ejN the vector (1, ωj, ω
2
j , ..., ω

N−1
j ) ∈ CN . The inner product

of ej and ek is ((j − k)l is counted modulo N)

(ej, ek) =
1

N

N−1∑
l=0

ωl
jωk

l =
1

N

N−1∑
l=0

ωjl
1 ω1

−kl =
1

N

N−1∑
l=0

ωl
j−k = δj.k,

as above. Writing

1

N

N−1∑
l=0

ωl
j =

1

2π

N−1∑
l=0

exp

{
j
2πli

N

}
2π

N
=

1

2π

N−1∑
l=0

exp {ijθl}∆θl,

which is a Riemann sum for the integral 1
2π

∫ 2π

0
eilθ dθ.
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When f and g are orthogonal, i.e. (f, g) = 0, we get (Pythagoras)

||f ||2 + g||2 = ||f ||2 + ||g||2

because the LHS is (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g) = ||f ||2 +
2 Re (f, g) + ||g||2, and (f, g) = 0.

Consider now a trigonometric polynomial, i.e. a function on the form∑M
n=N cnen, i.e. a finite linear combination of ens. Then

∣∣∣∣∣∣ M∑
n=N

cnen

∣∣∣∣∣∣2 =
M∑

n=N

|cn|2. (2)

because the LHS is(
M∑

n=N

cnen,
M∑

m=N

cmem

)
=

M∑
n=N

M∑
m=N

cncm(en, em) = RHS.

The Fourier coefficients of a general function f can be written

f̂(n) = (f, en) n ∈ Z.

We shall prove the following extension of (2):
Parseval’s formula: Let f be a continuous and 2π-periodic function. Then

||f ||2 =
∞∑
−∞

|f̂(n)|2. (3)

Proof. Write

SN =
∑
|n|≤N

f̂(n)en =
∑
|n|≤N

(f, en)en

for the partial sum of the Fourier series of f . Then

ŜN(n) = f̂(n), |n| ≤ N, and ŜN(n) = 0, |n| > N.

This implies that f − SN and SN are orthogonal:

(f − SN , SN) =
∑
|n|≤N

f̂(n)(f − SN , en) =
∑
|n|≤N

f̂(n)(f̂(n)− ŜN(n)) = 0
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as we just saw. The orthogonality implies that ||f ||2 = ||f − SN ||2 + ||SN ||2.
Hence ∑

|n|≤N

|f̂(n)|2 = ||SN ||2 ≤ ||f − SN ||2 + ||SN ||2 = ||f ||2

Letting N →∞ we get Bessel’s inequality

∞∑
−∞

|f̂(n)|2 ≤ ||f ||2.

Introduce the (continuous) function

F (θ) =
1

2π

∫ π

−π

f(θ − t)f(−t) dt.

This is the convolution f ∗ g, where g(t) = f(−t). The Fourier coefficients of
g are ĝ(n) =

1

2π

∫ π

−π

f(−t)e−int dt =
1

2π

∫ π

−π

f(s)eins ds =
1

2π

∫ π

−π

f(s)e−ins ds = f̂(n).

Hence F̂ (n) = f̂(n)ĝ(n) = f̂(n)f̂(n) = |f̂(n)|2. By Bessel’s inequality the
Fourier series of F converges uniformly to F :

F (θ) =
∞∑

n=−∞

|f̂(n)|2einθ.

Parseval’s formula follows upon putting θ = 0.

The calculations in the proof above lead to

lim
N→∞

||f − SN ||2 = 0,

i.e. the Fourier series converges to the continous function f in the L2-norm.
Indeed,

||f − SN ||2 =
∑
|n|>N

|f̂(n)|2

which tends to zero as N →∞ by Bessel’s inequality.

4



The meaning of Parseval’s formula: The formula shows that that the
Fourier transform on the circle, or torus T, is a norm-preserving mapping, an
isometry between the inner product spaces L2(T) = L2(−π, π) and L2(Z), all
doubly infinite sequences (cn)∞−∞ of complex numbers such that

∑
|cn|2 < ∞.

(In the book, this space is denoted l2(Z).) T and Z are (abelian) groups.
Parsevals formula, may be written

||f ||L2(T) = ||f̂ ||L2(Z).

More generally, the formula

||f ||L2(G) = ||f̂ ||L2(Ĝ)

holds, when G is an abelian group and Ĝ its dual group. We will return to
this later on.

The Dirichlet kernel revisited. We now return to the pointwise conver-
gence of the Fourier series, already touched upon in Lecture 2. Assume that
f is a continuous 2π-periodic function, which in addition is differentiable at
a point θ0. We shall prove that then

lim
N→∞

SN(θ0) = f(θ0).

Without loss of generality we may assume θ0 = 0. We use the formulae
deduced in Lecture 2:

SN(0)− f(0) =
1

2π

∫ π

−π

sin(N + 1/2)t

sin t/2
f(t) dt

=
1

2π

∫ π

−π

(F (t) cos Nt + G(t) sin Nt) dt,

where F and G are absolutely integrable functions. By the Riemann-Lebesgue
lemma the RHS tends to 0 as N →∞.
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