5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 4.

Inner product spaces. Let us briefly recall the inner products in RY
and CV.

We start with the real case and write V = RN, If a = (ag, a1, ...,an_1),
b= (bo,b1,...,bx_1), where a;,b; € R, then the inner product (dot product)

of a and b is
N—1

(a,b):a-b:Zajbj, a,beV.
=0

The important properties are

(i) (Aa + pub,c) = Ma,c) + u(b,c), A\peR, abceV;
(i) (b,a) = (a,b), a,beV,;
N-1
(iii) (a,a) =) ai=la>>0 if aeV,a#0.
=0

In the complex case, a = (ag,a1,...,an—1), b = (bg, b1, ...,bxy_1), where
a;,b; € C, the complex inner product is

=

(a,b) = a;bj, a,bev,

J

Il
o

where this time V = CV. Properties (i)-(iii) become

(i) (Aa + pb,c) = Ma,c) + u(b,c), A\peC, abceV;
(i)  (bya) =(a,b), a,beV;
1

N
(iii))  (a,a) =Y |a;?=la* >0 if a€V,a#0.
j=0

Consider now
1 ™
(F.9)= 5= [ FOFO®, and|fll =7l = VD (1)

Clearly properties (i) and (ii), in the complex case, hold. (iii) also holds
if we only consider continuous functions. (f,g) is the inner product in the
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space L?(—m, ), the square integrable functions on the interval (—, 7). For
a general function in this space (iii) has to be interpreted to mean that f =0
almost everywhere.

Two functions f and ¢ (in L*(—7, 7)) are orthogonal if (f,g) = 0. We
have seen before that for e, () = €™ we have

r [,
/ e?m(n—m)Hde _ 5nm7

(enem) = Y-
where the Kronecker symbol d,,,,, equals 1 when n = m, and 0 otherwise. This
means that (e,)22 _ is an orthonormal system. All functions are orthogonal:
(en,em) = 0 if n # m, and of unit norm (“length”): |le,|| = 1 for all n € Z.
To explain this somewhat, we shall consider the following example. It is
really about the Fourier transform on Zy, which will be examined more
closely later on in the course.

A very fundamental example: Let N > 0 be an integer and w a
complex number. Then 1 +w +w?+ ... +wV 1=(1-wV)/(1-w)ifw #1
and = N for w = 1. If also w"¥ = 1, we get

(1w + Wi+ wh ) = by,

where we have denoted by w; the jth root of unity:

21

Wj = wj N = exp {jW}’ 7=0,1,..., N — 1.

Denote by e; = e;ny the vector (1, wj,w]z, ...,wjv_l) € CV. The inner product

of e; and ey, is ((j — k)! is counted modulo )

| N2 L N2 L V-
(ej,er) = Witx' = N = =¥ _k = Ok,
1=0 1=0 =
as above. Writing
N-1 N-1 : N-1
1 1 2wl | 2w 1 .
N wé:%Zexp{j N }——% exp {ij0,} Af,,

which is a Riemann sum for the integral 5 fO% e? do.
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When f and g are orthogonal, i.e. (f,g) =0, we get (Pythagoras)
IF12 -+ gl? = 1£17 + 9]

because the LHS is (f + g, f +g) = (f. f) + (f.9) + (9. f) + (9.9) = | f|* +
2Re(f,g) + [g]?, and (f,g) = 0.

Consider now a trigonometric polynomial, i.e. a function on the form
S M cnen, ie. a finite linear combination of e,s. Then

M 9 M
13- ae| = Stk @)
n=N N

n—

because the LHS is

M M M M
(Z Cnn, Z cmem) = Z Z CnCm(€n, €m) = RHS.
n=N m=N

n=N m=N

The Fourier coefficients of a general function f can be written

A~

j)=(frea) meZ

We shall prove the following extension of (2):
Parseval’s formula: Let f be a continuous and 27-periodic function. Then

1712 = 1f (). (3)

Proof. Write

Sy = Z f(n)en = Z (f, en)en

In|<N In|<N

for the partial sum of the Fourier series of f. Then
Sn(n)=f(n), |n|<N, and Sy(n)=0, |n|>N.

This implies that f — Sy and Sy are orthogonal:

(f = Sn.Sw) = Y f)(f = Swren) = Y f(n)(f(n) = Sn(n)) =0

In|<N In|<N



as we just saw. The orthogonality implies that ||f||* = ||f — Sn||> + ||Sn||*.
Hence

D F P =1ISwIP < IIf = SwlfP + (1Sl = 1I£1?

In|<N

Letting N — oo we get Bessel’s inequality

D)< 1A

Introduce the (continuous) function

F(6) =

[ s a

This is the convolution f * g, where g(t) = f(—t). The Fourier coefficients of
g are g(n) =

1 (- - 1 (- 4 1 T . =
oy /_7r f(—t)e ™ dt = %/_ﬁ f(s)e™ ds = %/_W f(s)emmsds = f(n).

Hence F(n) = f(n
Fourier series of F'

)g(n) = f(n)f(n) = |f(n)|2. By Bessel’s inequality the
converges uniformly to F":

= 3 e,

n=—oo

Parseval’s formula follows upon putting ¢ = 0.
The calculations in the proof above lead to
Jim [1f = Sull =0,

i.e. the Fourier series converges to the continous function f in the L?-norm.

Indeed, )
If = Sull>= > 1f(n)]?

[n|>N

which tends to zero as N — oo by Bessel’s inequality.



The meaning of Parseval’s formula: The formula shows that that the
Fourier transform on the circle, or torus T, is a norm-preserving mapping, an
isometry between the inner product spaces L*(T) = L*(—m,7) and L*(Z), all
doubly infinite sequences (¢, ), of complex numbers such that Y |¢,|? < oo.
(In the book, this space is denoted [*(Z).) T and Z are (abelian) groups.
Parsevals formula, may be written

1112y = 11 1]22¢2).

More generally, the formula
2@ = 11126

holds, when G is an abelian group and G its dual group. We will return to
this later on.

The Dirichlet kernel revisited. We now return to the pointwise conver-
gence of the Fourier series, already touched upon in Lecture 2. Assume that
f is a continuous 27-periodic function, which in addition is differentiable at
a point #y. We shall prove that then

N—o0

Without loss of generality we may assume 6y = 0. We use the formulae
deduced in Lecture 2:

1 /’f sin(N + 1/2)t
Com ). sint/2
1 s

:% o

Sn(0) = £(0) Fit) dt
(F'(t) cos Nt + G(t) sin Nt) dt,

where F' and G are absolutely integrable functions. By the Riemann-Lebesgue
lemma the RHS tends to 0 as N — oo.



