
5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 5.
Hilbert spaces. An inner product space (Lecture 4) which is complete

is called a Hilbert space.

Completeness means that the space contains all its limit points. Think of
the rational numbers, which, when adding all their (finite) limits, yield the
real numbers. In our case we could include all limits of continuous functions in
the norm ||f ||2, where ||f ||22 = (f, f) = 1

2π

∫ π

−π
|f(θ)|2 dθ. The space obtained

is denoted L2(−π, π), all square integrable functions on the interval (−π, π).

We shall need the following variant of Parseval’s formula:

(f, g) =
∞∑
−∞

f̂(n)ĝ(n). (1)

It is a consequence of the identity

(u, v) =
1

4

(
||u + v||2 − ||u− v||2 + i(||u + iv||2 − ||u− iv||2)

)
,

which is valid for any complex inner product.

The isoperimetric inequality. This first application of Fourier series
relates the length of a curve C in the plane to the area of the domain D
inscribed. The proof goes back to Hurwitz 1901.

We have

l = length of C =

∫ b

a

√
ẋ(t)2 + ẏ(t)2 dt =

∫ b

a

|ṙ(t)| dt.

Here r(t) = (x(t), y(t)), a ≤ t ≤ b, is a parametrisation of the C1, say, curve.
The length l is independent of the parametrisation. In particular, we may
choose the arc-length s as parameter. Then |ṙ(s)| = 1 for 0 ≤ s ≤ l.

Assume now that C is closed: r(0) = r(l), and simple: the curve never
intersects itself. Then the area of D is by definition

A = area of D =
1

2

∣∣∣∣∫
C

xdy − ydx

∣∣∣∣ =
1

2

∣∣∣∣∫ l

0

(x(s)ẏ(s)− ẋ(s)y(s)) ds

∣∣∣∣ .

We shall prove that

A ≤ l2

4π
with equality only if C is a circle.
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Rescaling, we may assume that l = 2π. Then we have to show that A ≤ π
with equality only if C is a circle. Consider the Fourier series for x and y:

x(s) ∼
∞∑
−∞

ane
ins, y(s) ∼

∞∑
−∞

bne
ins.

Then

ẋ(s) ∼
∞∑
−∞

inane
ins, ẏ(s) ∼

∞∑
−∞

inbne
ins.

By Parseval’s formula
∞∑
−∞

|n|2
(
|an|2 + |bn|2

)
=

1

2π

∫ π

−π

(|ẋ(s)|2 + |ẏ(s)|2) ds = 1,

since |ẋ(s)|2 + |ẏ(s)|2 = |r(s)|2 = 1 everywhere. By the general form of
Parseval’s formula (1) we find

A = π

∣∣∣∣∣
∞∑
−∞

(
aninbn − inanbn

)∣∣∣∣∣ = π

∣∣∣∣∣
∞∑
−∞

(
−2inanbn

)∣∣∣∣∣
≤ π

∞∑
−∞

|n|(|an|2 + |bn|2) ≤ π
∞∑
−∞

|n|2(|an|2 + |bn|2) = π,

using the elementary inequality 2|anbn| ≤ |an|2 + |bn|2. Thus A ≤ π. It
remains to analyse when equality holds. If equality holds then this is the case
in the last inequality: π

∑∞
−∞ |n|(|an|2 + |bn|2) ≤ π

∑∞
−∞ |n|2(|an|2 + |bn|2).

Since |n| < |n|2 if |n| > 1, we must have an = bn = 0 for |n| > 1. Thus

x(s) = a−1e
−is + a0 + a1e

is and y(s) = b−1e
−is + b0 + b1e

is.

Since x and y are real-valued, a−1 = a1 and b−1 = b1 must hold. Furthermore,
a0 and b0 are both real. We also know that 2(|a1|2 + |b1|)2 = 1, and |a1| = |b1|
(from equality in 2|anbn| ≤ |an|2 + |bn|2). Some further manipulation leads
to x(s)− a0 = cos(α + s) and y(s)− b0 = ± sin(α + s). Then (x(s)− a0)

2 +
(y(s)− b0)

2 = 1, proving the claim.

Weyl’s equidistribution theorem. A sequence (ξn)∞n=1 of numbers in
the interval [0, 1) is equidistributed if for every 0 ≤ a ≤ b < 1, the number
Nn(a, b) of points ξk ∈ [a, b], for k ≤ n satisfies

lim
n→∞

Nn(a, b)

n
= b− a.
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Suppose we fix a number γ ∈ [0, 1) and look at the sequence γn = nγ(mod 1)
(n = 1, 2, ...), i.e. we only consider the part of nγ that falls into our interval.
For instance, if γ = 2/7, the sequence becomes

(2/7, 4/7, 6/7, 1/7, 3/7, 5/7, 0, 2/7, 4/7, 6/7, ...).

This periodic behaviour occurs if and only if γ is a rational number. One
could think of the γn as coming from a probability distribution on the points
0, 1/7, 2/7, ....6/7, with equal probability 1/7 for each point. If δa denotes
a point mass at the point a, then the invariant measure is 1

7

∑6
k=0 δk/7, the

equidistribution on the points 0, 1/7, 2/7, ....6/7.

Suppose now that γ is irrational. We may form the probability distri-
butions 1

n

∑n
k=1 δγk

. Weyl’s equidistribution theorem says that this sequence
converge to the ‘length’, or rectangular distribution, on [0, 1), the invariant
probability measure.

Theorem. For any rational γ, the sequence (γn)∞1 is equidistributed in [0, 1).

Proof. If φ is a function on [0, 1), we denote by Mn(φ) the mean-value

Mn(φ) :=
1

n

n∑
j=1

φ(γj).

We must show that for any interval [a, b] ⊂ [0, 1),

lim
n→∞

Mn(φ) =

∫ 1

0

φ(t) dt (2)

when φ = 1[a,b], the indicator function of [a, b], which is 1 on [a, b] and 0 oth-
erwise. One can easily see that the indicator function φ can be approximated
arbitrarily well by continuous functions: given ε > 0, there are continuous
functions φ± such that φ− ≤ φ ≤ φ+ and

∫ 1

0
|φ± − φ| dt < ε. Hence it is

sufficient to show (2) when φ is a continuous function on [0, 1]. We may view
φ as a 1-periodic function. We know that the Cesàro means σN(φ) = FN ∗ φ
tends to φ uniformly, i.e. max0≤t≤1|σN(φ)(t) − φ(t)| → 0, as N → ∞. The
σN(φ) are trigonometric polynomials, i.e. finite linear combinations of ek for
|k| ≤ N , where ek(t) = exp(2πikt). Hence it suffices to prove (2) for any ek,
k ∈ Z. Then Mn(φ) =

Mn(ek) =
1

n

n∑
j=1

ek(γj) =
1

n

n∑
j=1

e2πijkγ =
1

n

n∑
j=1

(
e2πikγ

)j
=

ω(1− ωn)

n(1− ω)
,
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where ω = e2πikγ 6= 1, since γ is irrational. Clearly, this tends to 0 as n →∞.
The theorem follows.

The heat equation on the circle. We want to solve

∂u

∂t
=

∂2u

∂x2
, t > 0, x ∈ R, u(0, x) = f(x),

where f is a given, continuous 2π-periodic function. We make the Ansatz

u(t, x) =
∞∑
−∞

cn(t)einx.

We note that t = 0 yields
∑

cn(0)einx = u(0, x) = f(x), so cn(0) = f̂(n).
Differentiating under the summation sign leads to

∞∑
−∞

c′n(t)einx =
∂u

∂t
=

∂2u

∂x2
=

∞∑
−∞

cn(t)(in)2einx = −
∞∑
−∞

n2cn(t)einx,

so
c′n(t) = −n2cn(t) =⇒ cn(t) = cn(0)e−n2t = f̂(n)e−n2t,

i.e.

u(t, x) =
∞∑
−∞

f̂(n)e−n2t(t)einx = Ht ∗ f(x),

where

Ht(x) =
∞∑
−∞

e−n2t(t)einx, t > 0, x ∈ R.

This is a good kernel. It is related to Jacobi’s theta function, to be encoun-
tered later.
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