Lecture 4

Ch. 4.5 - 4.6 from Avner Friedman

 

Definition

Linear operator.

Theorem. (AFr 4.5.1) (Banach-Steinhaus theorem)

Let $X$ be a Banach space and $Y$ be a normed linear space. Let $\{T_\alpha\}$ be a family of bounded linear operators from $X$ to $Y$. It for each $x\in X$ the set $\{T_\alpha x\}$ is bounded, then the set $\{\|T_\alpha\|\}$ is bounded.

Definition.

Let $X$ and $Y$ be normed linear spaces and let $T_n:\, X\to Y$. The sequence $\{T_n\}_{n=1}^\infty$ is said to be strongly convergent if for any $x\in X$ the limit $\lim_{n\to\infty} T_n x$ exists for any $x\in X$.
If there exists a bounded $T$ s.t. $\lim_{n\to\infty} T_n x = Tx$ for any $x\in X$, then $\{T_n\}_{n=1}^\infty$ is called strongly convergent to $T$ ($T_n \to T$).

Theorem. (AFr 4.5.2)

Let $X$ be a Banach space and $Y$ be a normed linear space and let $\{T_n\}_{n=1}^\infty$ be the sequence of bounded operators. If the sequence $\{T_n\}_{n=1}^\infty$ strongly convergent, then there exists $T$ s.t. $T_n\to T$ strongly.

Theorem. (AFr 4.6.1)(Open-mapping theorem)

Let $X$ and $Y$ be Banach spaces and let $T:\, X\to Y$ be a mapping onto. Then $T$ maps open sets of $X$ onto open sets of $Y$.

Home exercises.

1. (ex. 4.6.2 from AFr)
Let $X$ be a Banach space and let $A\in \mathcal B(X)$, $\|A\|<1$. Show that $(I+A)^{-1}$ exists and
$$
(I+A)^{-1} = \sum_{n=0}^\infty (-1)^n A^n.
$$

2. (ex. 4.6.3 from AFr)
Let $X$ be a Banach space and let $T$ and $T^{-1}$ belong to $\mathcal B(X)$. Show that is $S\mathcal B(X)$ and $\|S-T\| <1/\|T^{-1}\|$, then $S^{-1}$ exists and
$$
\|S^{-1} - T^{-1}\| < \frac{\| T^{-1}\|}{1 - \|S-T\|\|T^{-1}\|}.
$$

3. (Holmgren)
Let
$$
Kf(x) = \int_0^1 K(x,y) f(y) \,dy, \qquad x\in (0,1).
$$
Assume that $K\in L^2(0,1)\to L^2 (0,1)$ is bounded. Then
$$
\|K\| \le \Bigl(\sup_y\int_0^1|K(x,y)|\,dx\Bigr)^{1/2} \Bigl(\sup_x\int_0^1|K(x,y)|\,dy\Bigr)^{1/2}.
$$