## 5B1473 Elementary differential geometry, spring 2007

Homework problems 2
To be handed in $6 / 3$

1 Identify $\mathbb{R}^{4}$ with the quaternions as $(x, y, z, w) \leftrightarrow x+i y+j z+k w$ and identify $S^{3}$ with the unit quaternions. For $p \in S^{3}$ compute the tangent space $T_{p} S^{3}$ and the derivative of the diffeomorphism $f_{p}$ given by $f_{p}(q)=p q$.
(reminder: The quaternions are defined by $i^{2}=j^{2}=k^{2}=i j k=-1$.)
2 Use the previous problem to find three everywhere linearly independent vector fields on $S^{3}$ of the form $\left(f_{p}\right)_{*}(\alpha)$ for $\alpha \in T_{1} S^{3}$. Show that $T S^{3}$ is diffeomorphic to $S^{3} \times \mathbb{R}^{3}$. Show that all integral curves of the vector fields are circles.
(hint: Make sense of the expression $e^{t \alpha}$ to find the integral curves.)
3 Find a smooth vector field on $S^{2}$ which is zero at exactly one point.
4
Let $V_{1}=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ and $V_{2}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ be vector fields on $\mathbb{R}^{2}$. Find coordinates near the point $(1,0)$ for which $V_{1}, V_{2}$ are the coordinate vector fields.

5 Let $V_{1}=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ and $V_{2}=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$ be vector fields on $\mathbb{R}^{2}$. Compute the flows $\rho_{t}^{1}, \rho_{t}^{2}$ of $V_{1}, V_{2}$ and verify that they do not commute by finding explicit times $t_{1}, t_{2}$ such that $\rho_{t_{1}}^{1} \circ \rho_{t_{2}}^{2} \neq \rho_{t_{2}}^{2} \circ \rho_{t_{1}}^{1}$.

6 Let $M$ be a connected smooth manifold and let $p, q \in M$. Show that there is a diffeomorphism $f: M \rightarrow M$ with $f(p)=q$.
(hint: First prove the statement for $p, q$ in the unit ball of $\mathbb{R}^{n}$ by constructing a compactly supported vector field which flows $p$ to $q$.)

