1 Suppose M and N are oriented compact manifolds of dimension m and that $f: M \to N$ is a smooth map such that $\int_M f^* \omega \neq 0$ for some m-form ω on N. Show that f must be surjective.

(*hint:* See section 5.5 in the book.)

- 2 A manifold M is called simply connected if every piecewise smooth map $S^1 \to M$ can be extended to a piecewise smooth map $D^2 \to M$. Show that $H^1_{dR}(M) = 0$ if M is simply connected.
- **3** For integers p, q define maps $f_{pq}: S^1 \to T^2$ by

 $S^1 \ni (\cos t, \sin t) \mapsto (\cos pt, \sin pt, \cos qt, \sin qt) \in S^1 \times S^1.$

Compute the induced maps on H^1 and show that f_{pq} and $f_{p'q'}$ are not homotopic if $(p,q) \neq (p',q')$.

- **4** A symplectic form on a manifold M of dimension 2n is a closed two-form ω such that $\omega^n = \underbrace{\omega \wedge \cdots \wedge \omega}_{n}$ is never zero. Show that ω^n is not exact. Show that $H^{2k}_{dR}(M^{2n}) \neq 0$ for $k = 0, \ldots, n$ if M^{2n} has a symplectic form. Show that S^2 is the only sphere which has a symplectic form.
- **5** Compute $H^k_{dR}(M)$, k = 0, ..., 3 where M is \mathbb{R}^3 with the x-axis and the point (0, 0, 1) removed. Find explicit forms representing basis vectors of $H^k_{dR}(M)$.