- 1 Show that every map $S^n \to T^n = S^1 \times \cdots \times S^1$ has degree zero. (*hint:* The volume form on T^n is a product.)
- 2 Compute the linking number of the following pairs of curves:

- Sketch vector fields on S^2 and T^2 having only isolated singular points, at least one of which has index 3.
- 4 Let M^2 and N^0 be submanifolds of \mathbb{R}^3 , where M^2 is diffeomorphic to S^2 and N^0 is a point. Compute the linking number lk(M, N). What is the result if M^2 is any compact oriented 2-dim. manifold?
- 5 Suppose that M, N are compact manifolds without boundary with Morse functions f, g respectively. Show that h = f + g is a Morse function on $M \times N$ and use this to show that $\chi(M \times N) = \chi(M)\chi(N)$.
- 6 Let M be a compact manifold without boundary and let $\pi : \widetilde{M} \to M$ be a d-fold covering. That is, M can be covered with open sets U with the property that $\pi^{-1}(U)$ is disjoint union of d open sets U_1, \ldots, U_d such that $\pi_{|U_i} : U_i \to U$ is a diffeomorphism. Show that $\chi(\widetilde{M}) = d\chi(M)$.
 - Find a Morse function on a compact oriented two-dimensional manifold M with g holes and use this to compute the Euler number.

