Institutionen för matematik

KTH
Chaotic Dynamical Systems, Fall 2006
Michael Benedicks

Homework assignment 5

This exercise set is due December 19, 2006

1. Consider the diffeomorphism Q_{λ} of the plane given by

$$
\begin{aligned}
x_{1} & =e^{x}-\lambda \\
y_{1} & =-\frac{\lambda}{2} \arctan y
\end{aligned}
$$

where λ is a parameter.
a. Find all fixed points and periodic points of period 2 for Q_{λ}.
b. Classify each of these periodic points as sinks, sources, or saddles.
c. If the point is a saddle, identify and sketch the stable and unstable manifolds.
2. Let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

Construct a Markov partition for the corresponding map L_{A} of the torus.
3. Consider the map F on D defined geometrically as in the picture. Assume that F linearly contracts vertical lenghts and linearly expands horizontal lengths in S exactly as in the case of Smale's horseshoe. Let

$$
\Lambda=\left\{p \in D \mid F^{n}(p) \in S \text { for all } n \in \mathbb{Z}\right\}
$$

Show that F on Λ is topologically conjugate to a two-sided subshift of finite type generated by a 3×3 matrix A. Identify A. Discuss the dynamics of F off Λ

4. Linear automorphims of the sphere. Let S^{2} denote the twodimensional sphere in \mathbb{R}^{3}, i.e.

$$
S^{2}=\left\{x \in \mathbb{R}^{3}| | x \mid=1\right\}
$$

Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

and define the map

$$
F(x)=F_{A}(x)=\frac{A x}{|A x|}
$$

F_{A} os called a linear automorphism of S^{2}.
a. Prove that F maps $\mathbb{R}^{3}-\{0\}$ onto S^{2}.
b. Prove that the restriction of F to S^{2} is a diffeomorphims of the sphere.
c. Let $e_{1}=(1,0,0) e_{2}=(0,2,0) e_{3}=(0,0,3)$. Prove that the $\pm e_{j}$ are the fixed points of F.
d. Compute the Jacobi matrices $D F\left(\pm e_{j}\right)$. Prove that $D F\left(\pm e_{j}\right)$ has an eigenvalue equal to 0 with corresponding eigenvector e_{j}.
e. Prove that each of the other vectors $e_{i}, i \neq j$, are also eigenvectors for $D F\left(\pm e_{j}\right)$. Evaluate the corresponding eigenvalues.
f. Conclude that $\pm e_{1}$ is a source, $\pm e_{2}$ is a saddle, and $\pm e_{3}$ is a sink.
g. Define $\phi: S^{2} \rightarrow \mathbb{R}$ by $\phi(x)=\left|A^{-1} x\right|^{2}$. Prove that $\phi(F(x))=\phi(x)$ if and only if $x= \pm e_{j}$ for some j. The function ϕ is called a gradient function since it decreases along the orbits of F except the fixed points. F itself is called gradient like.
h. Use the information above (including the gradient function) to sketch the phase portrait of F

