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1 Introduction

We start with formulating the usual risk model. Let (Ω,F , P ) be a complete probability space
carrying the following independent objects:

(i) a point process N = {N(t); t ≥ 0};
(ii) a sequence {Zj}∞1 of independent and identically distributed random variables, having the

common distribution function F , with F (0) = 0, mean value µ, and variance σ2.

The risk process, X, is defined by

X(t) = ct−
N(t)∑

k=1

Zk,

( 0∑

k=1

Zk
def= 0

)
,

where c is a positive real constant. Let Sk denote the epoch of the kth claim.
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Figure 1: Illustration of notation.

If N is stationary with intensity α, i.e. E[N(t)] = αt, we put

ρ =
c− αµ

αµ
relative safety loading ρ > 0.

Ruin probability :

Ψ(u, t) = P{u + X(s) < 0 for some s ∈ (0, t]} = P{Tu ≤ t}

Ψ(u) = P{u + X(t) < 0 for some t > 0} = P{Tu < ∞},
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where Tu the time of ruin.

Let the integrated tail distribution FI be defined by

FI(z) def=
1
µ

∫ z

0

F (x) dx,

where F (x) = 1− F (x).
Risk theory goes back to Filip Lundberg (1903).

2 The Poisson case

Let N = {N(t); t ≥ 0} be a Poisson process with intensity α.
We have

Ψ(u) =
ρ

1 + ρ

∞∑
n=0

(
1

1 + ρ

)n

F n∗
I (u), (1)

which, in fact, is the Pollaczek–Khinchine formula.
The Pollaczek–Khinchine formula has a natural probabilistic interpretation, in terms of “as-

cending ladder points” of a random walk. In actuarial literature (1) is often referred to as the
Beekman’s convolution formula.

2.1 Small claims

Put
h(r) def=

∫ ∞

0

(erz − 1) dFZ(z) and θ(r) def= αh(r)− cr.

Definition 1 We talk about small claims, or say that F is light-tailed, if there exists r∞ > 0 such
that h(r) ↑ +∞ when r ↑ r∞ (we allow for the possibility r∞ = +∞).

The important part of Definition 1 is that h(r) < ∞ for some r > 0. This means that the tail
of F decreases at least exponentially fast, and thus for instance the lognormal and the Pareto
distributions are excluded.

Classical results for the Poisson case which go back to Lundberg (1926) and Cramér (1930):

Ψ(0) =
1

1 + ρ
;

Ψ(u) =
1

1 + ρ
e
− ρu

µ(1+ρ)

when the claim costs are exponentially distributed with mean µ;

the Cramér-Lundberg approximation

lim
u→∞

eRuΨ(u) = C, (2)

where the Lundberg exponent R is the positive solution of

αh(r) = cr (3)

and C = ρµ
h′(R)− c

α
;

the Lundberg inequality
Ψ(u) ≤ e−Ru. (4)

Techniques:
1. Differential argument.
Consider what can happen in [0, ∆] and use stationary and independent increments.
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2.Renewal argument.
Consider what happens in [0, S1] and use renewal structure. Note: Ruin can occur only at epochs
of claims.
3. Martingale method. (Gerber 1973)
The time of ruin Tu is a FX -stopping time and

Mu(t) = e−θ(r)te−r(u+X(t)) =
e−r(u+X(t))

et(αh(r)−cr)
,

Mu is an FX -martingale.
We will first give the main ideas:
By optional stopping (after some technical tricks) we get, since Mu is positive,

Mu(0) = E[Mu(Tu)]
= E[Mu(Tu) | Tu < ∞]P{Tu < ∞}

+ E[Mu(Tu) | Tu = ∞]P{Tu = ∞}
≥ E[Mu(Tu) | Tu < ∞]P{Tu < ∞}
= E[Mu(Tu) | Tu < ∞]Ψ(u).

Since u + X(Tu) ≤ 0 on {Tu < ∞} we get

Ψ(u) ≤ Mu(0)
E[Mu(Tu) | Tu < ∞]

=
e−ru

E[e−θ(r)Tue−r(u+X(Tu))] | Tu < ∞]

≤ e−ru

E[e−θ(r)Tu | Tu < ∞]

≤ e−ru

inf0≤t<∞ e−θ(r)t
.

Since we want r as large as possible, it seems natural to define the Lundberg exponent R by

R = sup{r ≥ 0 | θ(r) ≤ 0} = sup{r ≥ 0 | αh(r)− cr ≤ 0},

which is the same as in (3), and we get the Lundberg inequality.
We will now give the real proof:
Choose y and y such that 0 ≤ y ≤ y < ∞ and consider yu ∧ Tu

def= min(yu, Tu), which is a
bounded FX -stopping time. Since FX

0 is trivial and since Mu is positive, it follows, by optional
stopping, that

Mu(0) = E[Mu(yu ∧ Tu)]
= E[Mu(yu ∧ Tu) | Tu ≤ yu]P{Tu ≤ yu}

+ E[Mu(yu ∧ Tu) | yu < Tu ≤ yu ]P{yu < Tu ≤ yu}
+ E[Mu(yu ∧ Tu) | Tu > yu ]P{Tu > yu}

≥ E[Mu(yu ∧ Tu) | yu < Tu ≤ yu ]P{yu < Tu ≤ yu}
= E[Mu(Tu) | yu < Tu ≤ yu ]P{yu < Tu ≤ yu}. (5)
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Since u + X(Tu) ≤ 0 on {Tu < ∞} we get

Ψ(u, yu)−Ψ(u, yu)

= P{yu < Tu ≤ yu} ≤ Mu(0)
E[Mu(Tu) | yu < Tu ≤ yu]

≤ e−ru

E[e−θ(r)Tu | yu < Tu ≤ yu]
≤ e−ru

infyu≤t≤yu e−θ(r)t

≤ e−u min(r−yθ(r),r−yθ(r)). (6)

In order to get (6) as small as possible, we define the “time-dependent” Lundberg exponent Ry
y by

Ry
y = sup

r≥0
min(r − yθ(r), r − yθ(r)),

and we have the “time-dependent” Lundberg inequality

Ψ(u, yu)−Ψ(u, yu) ≤ e
−Ry

yu
. (7)

Note that the “ordinary” Lundberg exponent, see (3), is given by

R = sup{r ≥ 0 | θ(r) ≤ 0} = sup{r ≥ 0 | αh(r)− cr ≤ 0}.

Put
fy(r) = r − yθ(r),

and note that fy(R) = R and that fy(r) is concave. Thus Ry
y ≥ R for all y and y. Since fy is

differentiable and strictly concave for y ∈ (0,∞), it follows that

sup
r≥0

fy(r) = fy(ry) where f ′y(ry) = 1− yθ′(ry) = 0.

Thus supr≥0 fy(r) > R unless ry = R ⇔ y = 1/θ′(R). The value y0
def= 1/θ′(R) is called the critical

value. For y = 0 we have f0(r) = r and for y = ∞ we put

f∞(r) def= lim
y→∞

fy(r) =





∞ for r < R,

R for r = R,

−∞ for r > R.

Since

ry
<
>

R ⇔ f ′y(R)
<
>

0 ⇔ y
>
<

y0,

it follows that Ry
y = R when y ≤ y0 ≤ y. Further

fy(r) <
>

fy(r) as r
<
>

R.

Putting this together, we get

Ry
y =





R if y ≤ y0 ≤ y,

fy(ry) if y ≤ y0,

fy(ry) if y0 ≤ y.

(8)

Thus, in order to get (7) as informative as possible, we shall choose y as large as possible when
Ry

y is determined by y and y as small as possible when Ry
y is determined by y. This leads to the

following three Lundberg inequalities:
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For y = 0 and y = ∞:
Ψ(u) ≤ e−Ru;

for y = 0 and y ≤ y0:
Ψ(u, yu) ≤ e−Ry

0u; (9)

for y = ∞ and y ≥ y0:
Ψ(u)−Ψ(u, yu) ≤ e−R∞y u. (10)

For any ε > 0 we get, from (9) with y = y0 − ε and from (10) with y = y0 + ε,

P

{∣∣∣∣
Tu

u
− y0

∣∣∣∣ > ε

}
≤ e−R

(y0−ε)
0 u + e−R∞(y0+ε)u.

Thus it follows from the Cramér-Lundberg approximation, i.e.,

lim
u→∞

eRuP{Tu < ∞} = C,

that

lim
u→∞

P

{∣∣∣∣
Tu

u
− y0

∣∣∣∣ > ε | Tu < ∞
}
≤ lim

u→∞
e−R

(y0−ε)
0 u + e−R∞(y0+ε)u

P{Tu < ∞} = 0

or, where P−→ means “convergence in probability”, that

Tu

u

P−→ y0 on {Tu < ∞} as u →∞. (11)

2.2 Large claims

Definition 2 We talk about large claims if FI belongs to the class S of subexponential distribu-
tions, i.e. if

lim
z→∞

F 2∗
I (z)

F I(z)
= 2.

It is shown by Embrechts and Veraverbeke (1982, p. 70), cf. Pakes (1975, p. 557) for a queueing
setting, that

Ψ(u) ∼ 1
ρ
F I(u), u →∞. (12)

does hold exactly when FI ∈ S. The approximation (12) has a much slower speed of convergence
than (2), see for instance Grandell (1997, p. 222).

Notice that (2) and (12) apply for fixed values of ρ as u →∞. Thus those approximations may
be looked upon as “large deviation” results and it is seen that the asymptotic behaviour of Ψ(u)
is very different. However, not only that behaviour is different, but also “the way” ruin occurs
is different. The formal way to discuss this is to consider the risk process before ruin occurs,
conditioned upon that ruin occurs. These questions are studied by Asmussen (1982)in the case of
small claims, i.e. when (2) applies, and by Asmussen and Klüppelberg (1996) in the case of large
claim, i.e. when (12) applies. A nice discussion about these questions can be found in Embrechts,
Klüppelberg and Mikosch (1997). Here we will only mention that in the small claim case the risk
process before ruin behaves as a risk process with negative drift. A little more precisely the Poisson
intensity is α + cR and the claim distribution is

∫ z

0

eRxdF (x)/(1 + cR/α) dx

before ruin, which happens close to the (deterministic) time u/(αh′(R)−c). One may express that
as, for large values of u, ruin occurs due to a combination of many and (rather) large claims. In the
large claim case it is a little more complicated to describe the situation precisely, but very roughly
the risk process behaves normally until a really huge claim occurs which causes ruin. Naturally
one may think of a “cooperation” of many large claims also in this case, but for (very) large values
of u this possible cooperation is not enough to cause ruin.
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3 Generalizations

The classical risk model can be generalized in many ways.

A. The premiums may depend on the result of the risk business.

B. Inflation, interest, and risky investments may be included in the model.

C. The occurrence of the claims may be described by a more general point process than the
Poisson process.

Dassios and Embrechts (1989) and Delbaen and Haezendonck (1987) are very readable studies
focusing mainly on generalizations A and B, while generalization C is considered by Grandell
(1991). In all these studies most results are derived with the help of martingales.

4 Cox models

Intuitively we shall think of a Cox process N as generated in the following way: First a realization
α(t) of a non-negative random process λ = {λ(t); t ≥ 0} is generated and conditioned upon that
realization N is a non-homogeneous Poisson process with intensity function α(t). The process λ is
called the intensity process.

Formally the distribution ΠΛ of a Cox process is given by

ΠΛ{B} =
∫

M

Πµ{B} Π{dµ} for B ∈ B(N ),

where M is the set of Borel measures, N ⊂M is the set of point processes, Λ a random measure
with distribution Π, and Πµ the distribution of a Poisson process with intensity measure µ.

Now we consider a Cox model where N is a Cox process with intensity process λ(t). The
intensity measure Λ is given by

Λ(t) =
∫ t

0

λ(s) ds.

A detailed discussion of Cox processes and their impact on risk theory is found in Grandell (1991).
A natural filtration is F = (FΛ

∞ ∨ FX
t ; t ≥ 0). Note that F0 = FΛ

∞. Then

(i) N(t) has independent increments relative to FΛ
∞;

(ii) N(t)−N(s) is Poisson distributed with mean Λ(t)− Λ(s) relative to FΛ
∞.

We will only consider small claims. It seems very natural to try to find an F-martingale “as close
as possible” to the one used in the Poisson case. Therefore we consider

M(t) =
e−r(u+X(t))

eΛ(t)h(r)−trc
,

where we quite simply have replaced αt with Λ(t). It is easy to show that M is an F-martingale.
Put C(r) = E

[
supt≥0 eΛ(t)h(r)−rct

]
and R = sup{r | C(r) < ∞}.

Using this martingale Björk and Grandell (1988) gave an extension of Gerber’s martingale
approach and proved the following Lundberg inequality.

Theorem 1 For every ε > 0 such that 0 < ε < R we have

Ψ(u) ≤ C(R− ε)e−(R−ε)u,

where C(R− ε) < ∞.
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This theorem is rather useless, since in general it is probably very difficult to actually determine R.
The condition ε > 0 is unpleasant, but it is quite possible, and really natural, that C(R) = +∞.
In fact, C(R) < ∞ requires a discontinuity in C(r) at r = R. In the Poisson case we have such a
discontinuity since C(r) = 1 for r ≤ R and C(r) = ∞ for r > R.

Independent jump intensity

We now consider a class of intensity processes with “independent jumps.”
Intuitively an independent jump intensity is a jump process where the jump times form a

renewal process and where the value of the intensity between two successive jumps may depend
only on the distance between these two jumps. More formally, let Σk, k = 1, 2, . . . denote the
epoch of the kth jump of the intensity process and let Σ0

def= 0. Put

σn = Σn − Σn−1

Ln = λ(Σn−1)
n = 1, 2, 3, . . . .

Here we understand that λ has right-continuous realizations so that λ(t) = Ln for Σn−1 ≤ t < Σn.

t 

L1

Σ2 Σ3

L2

L 

λ(t)

Σ1

3

0
3Σ

σσ σ21

Figure 2: Illustration of notation.

Definition 3 An intensity process λ is called

(i) an independent jump intensity if the random vectors

(L1, σ1), (L2, σ2), (L3, σ3), . . .

are independent and if (L2, σ2), (L3, σ3), . . . have the same distribution p;

(ii) an ordinary independent jump intensity if (L1, σ1) also has distribution p;

(iii) a stationary independent jump intensity if the distribution of (L1, σ1) is chosen such that λ
is stationary.

Let (L, σ) be the generic vector for (Ln, σn), n ≥ 2, i.e.,

Pr{L ∈ A, σ ∈ B} = p(A×B) for A, B ∈ B(R+).

The marginal distribution of L is denoted by pL, i.e.,

pL(A) = p(A× R+) for A ∈ B(R+).

Let q be the distribution of (L1, σ1). The intensity λ is stationary if

q(A×B) =
1

E[σ]
∫
B

p(A× (t,∞)) dt. (13)
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Put
φ(r) def= E[e−rcσ+h(r)Lσ].

A main result in Björk and Grandell (1988) is the following theorem.

Theorem 2 Lundberg’s inequality (in the Cox version) holds with

R = sup{r ≥ 0 | φ(r) ≤ 1}.

When nothing else is said, we assume positive safety loading which here means that cE[σ] >
µE[Lσ]. Consequently we assume that E[σ] < ∞ and E[Lσ] < ∞. Positive safety loading alone
does not imply R > 0, but it does if φ(r) < ∞ for some r > 0.

The Lundberg exponent R is the “right” exponent in the following sense:

Theorem 3 Assume that φ(r) < ∞ for some r > R > 0. Then

lim
u→∞

e(R+ε)uΨ(u) = ∞

for every ε > 0.

We shall now consider a martingale approach, due to Embrechts, Grandell and Schmidli (1993),
which will allow to consider finite-time Lundberg inequalities and to get “ε = 0”. That approach
can be looked upon as a generalization of an approach used by Björk and Grandell (1988) and
Grandell (1991) when λ is a Markov process with independent jumps or a finite-state Markov
process.

In our applications all Markov processes will be so-called piecewise-deterministic Markov (PD)
processes. This class of was introduced by Davis (1984). Dassios and Embrechts (1989) has shown
that many important risk processes are naturally handled within the framework of PD processes.

Intuitively a PD process follows a deterministic path, determined by a first-order differential
operator χ, until it jumps, according to an intensity function κ(y) or when it hits the boundary
∂S of S, and a jump measure K(y,B), y ∈ S, B ∈ B(S). The operator χ is the generator “between
jumps”, κ(y)dt is the probability of a jump in the interval (t, t + dt] when Y (t) = y, and K(y, B)
is the probability that a jump leads to a point in B.

The generator A, see Dassios and Embrechts (1989, pp. 185), is given by

Af(y) = χf(y) + κ(y)
∫

S
(f(z)− f(y))K(y, dz), (14)

for all functions f in the domain of A, where χ =
n∑

k=1

ck(y) ∂
∂yk

. If jumps are also caused by hits of

the boundary, f must fulfil the condition

f(y) =
∫

S
(f(z)− f(y))K(y, dz), for all y ∈ ∂S,

in order to belong to the domain of A.
Thus, if f is in the domain of A and Af ≡ 0, then, by Dynkin’s theorem, f(Y (t)) is an

FY -martingale.
We will, however, need the following rather strong assumptions. Consider the convex sets

C∞ = {(ϑ, r) | φ(ϑ, r) < ∞} and C1 = {(ϑ, r) | φ(ϑ, r) ≤ 1}.

Assumption 1 Assume that ∂C1 ⊂ intC∞, where ∂ means boundary and int stands for interior.

Assumption 2 Assume that

sup
w≥0

E[σ − w | σ > w, L = ` ] ≤ B < ∞, pL-a.s.
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Example 1 An interesting special case is when σ, conditioned upon L, is exponentially dis-
tributed, since then λ is a Markov process with independent jumps. This means that

p(d`× ds) = pL(d`) η`e
−η`s ds.

In this case (X, λ) = {(X(t), λ(t)); t ≥ 0} is a Markov process.

Consider the vector process

Y = {(X(t), λ(t), W (t), t); t ≥ 0},
where W (t) is the time remaining to the next jump of the intensity, and the filtration FY =
(FX

t ∨ Fλ
t ∨ FW

t ; t ≥ 0). Due to the regenerative structure of λ(t), the vector process Y is a
PD process.

In the ordinary case there is a jump of the intensity at the origin, i.e., (λ0, W0) has distribution
p. In the stationary case (λ0, W0) has distribution q, given by (13). In order to reduce the number
of parentheses in the formulas below, we – sometimes – use the notations Xt, λt, and Wt.

From (14) if follows that the generator for (Xt, λt, Wt, t) is given by

Af(x, `, w, t) =c
∂f(x, `, w, t)

∂x
− ∂f(x, `, w, t)

∂w
+

∂f(x, `, w, t)
∂t

+ `

∫ ∞

0

(f(x− y, `, w, t)− f(x, `, w, t))dF (y)

with boundary condition

f(x, `, 0, t) =
∫
R

f(x, λ, w, t) p(dλ× dw) .

For fixed r < sup{r̃ | ∃ϑ ∈ R, (ϑ, r̃) ∈ C∞} we look for a positive FY-martingale Mu(t) of the
form

Mu(t) = e−θ(r)tg(λt,Wt)e−r(u+Xt),

where g, depending on r, is differentiable in its second component.
The following Lemma follows from (14), Dynkin’s theorem, and and the implicit function

theorem.

Lemma 1 In the above independent jump intensity model,

Mu(t) = e−θ(r)(t+Wt) e−crWt+λth(r)Wt e−r(u+Xt), t ≥ 0,

is an FY-martingale, where θ(r), given by

E
[
e−θ(r)σ−crσ+h(r)Lσ

]
= 1,

is differentiable and convex.

Choose y and y such that 0 ≤ y ≤ y < ∞. Then, exactly as in (5), we get

Mu(0) = EFY
0 [Mu(Tu) | yu < Tu ≤ yu ]PF

Y
0 {yu < Tu ≤ yu}

and thus, compare (6),

PF
Y
0 {yu < Tu ≤ yu} ≤ Mu(0)

EFY
0 [Mu(Tu) | yu < Tu ≤ yu ]

≤ g(λ0,W0)e−ru

EFY
0 [e−θ(r)Tug(λ(Tu),W (Tu)) | yu < Tu ≤ yu ]

≤ g(λ0,W0)e−u min(r−yθ(r),r−yθ(r))

EFY
0 [g(λ(Tu),W (Tu)) | yu < Tu ≤ yu ]

.
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In contrast to (6), where this posed no problem, here we have to ensure that

EFY
0 [g(λ(Tu),W (Tu)) | yu < Tu ≤ yu ]

= EFY
0 [exp{−W (Tu)(θ(r) + cr − λ(Tu)h(r))} | yu < Tu ≤ yu ] > 0

for all values of u. This is rather technical, and we have to refer to Embrechts, Grandell and
Schmidli (1993).

In the ordinary case we have
E[g(λ0,W0)] = 1,

whereas in the stationary case, see Grandell (1991, p. 96),

E[g(λ0,W0)] =
E

[∫ σ

0
g(L, s) ds

]

E[σ]
=

E
[∫ σ

0
e−s[θ(r)+cr−Lh(r)] ds

]

E[σ]

≤ E
[
σ

(
1 + e−σ[θ(r)+cr−Lh(r)]

)]

E[σ]

and it follows from Assumption 1 that E[g(λ0,W0)] < ∞.

The Lundberg inequalities and (11) follows almost as in the Poisson case, since R is the “right”
exponent.

A generalization of the Cramér-Lundberg approximation (2) is due to Schmidli (1997). In
the case of finite-state Markovian intensity, the Cramér-Lundberg approximation was given by
Asmussen (1989).

For large claims we have the following theorem, due to Asmussen, Schmidli and Schmidt (1999)
in the ordinary case. Recall that positive safety loading here means that cE[σ] > µE[Lσ].

Theorem 4 Assume that F, FI ∈ S and that there exists a δ > 0 such that E[eδLσ] < ∞. Then

Ψ(u) ∼ µE[Lσ]
cE[σ]− µE[Lσ]

F I(u), u →∞.

Remark : The natural definition of the safety loading ρ is

ρ =
cE[σ]− µE[Lσ]

µE[Lσ]
,

see Grandell (1991, p. 98). With this definition of ρ it is seen that (12) holds also in this case.

The condition E[eδLσ] < ∞ in Theorem 4 guarantees that Ψ(u) does not become heavy-tailed
due to many claims. In fact, if the distribution of Lσ is heavy-tailed, also Ψ(u) may be heavy-
tailed. Such results are given by Asmussen, Schmidli and Schmidt (1999). They are, however,
complicated, and will not be given here.

In the case of finite-state Markovian intensity, the correspondence to Theorem 4 is due to
Asmussen, Fløe Henriksen and Klüppelberg (1994). Naturally no conditions on the intensity are
needed in order to avoid “too many claims”.

5 Thinning and the choice of models

A Cox process is a generalization of the Poisson process in the sense that stochastic variation in the
intensity is allowed and is therefore very natural as a model for “risk fluctuation”. Cox processes
are characterized by the fact that they can be obtained by independent p-thinning for all p. An
“opposite” class are “top processes” which can not be obtained by any p-thinning. It is natural to
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consider claims as caused by “risk situations” or incidents. Then it is highly unnatural to choose N
among top processes. Furthermore this view, in our opinion, indicates that it is natural to choose
N among Cox processes in particular when each incident causes a claim with small probability.

Let, as an example, N be a renewal process with Γ-distributed inter-occurrence times with
form parameter β. It is shown by Yannaros (1988) that N is a Cox process if 0 < β ≤ 1 and a top
process if β > 1. For β < 1, the Γ-distribution is a mixture of exponential distributions. Rather
much is explicitly known about ruin probabilities in the renewal case when the inter-occurrence
time distribution is a mixture of exponential distributions. Those renewal processes are, in fact,
Cox processes.
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