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The Cramér—Lundberg Model

Assumptions

We assume in this talk that all risk processes converge to co and
that all quantities defined are well-defined.
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The Classical Risk Model

@ x: initial capital
@ C: premium rate

@ {N;}: Poisson process with rate A
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The Classical Risk Model

@ x: initial capital

@ C: premium rate

@ {N.;}: Poisson process with rate A
o {Y;}: iid,
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The Classical Risk Model

N
Xt:X‘i‘Ct—ZY,'
i=1

@ x: initial capital

@ C: premium rate

@ {N.;}: Poisson process with rate A
e {Y;}: iid, independent of {/N,}
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The Classical Risk Model

x: initial capital

C: premium rate

{Y;}: iid, independent of {N;}

°
°

@ {N.;}: Poisson process with rate A

°

e G(y): distribution function of Y;, G(0) =0
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The Cramér—Lundberg Model

The Classical Risk Model

@ x: initial capital

@ C: premium rate

@ {N.;}: Poisson process with rate A

e {Y;}: iid, independent of {N;}

e G(y): distribution function of Y;, G(0) =0

o =Y, p=m,  My(r)=E["]
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Change of Measure

Let
0(r) = A(My(r)—1) —cr.
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Change of Measure

Let
0(r) = A(My(r)—1) —cr.

Then {e~"(Xe=)=0("t1 is a martingale with mean value 1.
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The Cramér—Lundberg Model

Change of Measure

Let
0(r) = A(My(r)—1) —cr.

Then {e~"(Xe=)=0("t1 is a martingale with mean value 1.
Define the measure Q, as

Q[A] = E[e " XT=0=00T Al - Ae Frn{T < o} .

Here T is a stopping time.
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The Cramér—Lundberg Model

Change of Measure

Let
0(r) = A(My(r)—1) —cr.

Then {e~"(Xe=)=0("t1 is a martingale with mean value 1.
Define the measure Q, as

QA = E[e"X7=)=0(0T- A1 =~ Aec Frn{T < oo} .

Here T is a stopping time.
We let R be the strict positive solution to 6(r) = 0.
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Change of Measure

Under @, the model remains a Cramér—Lundberg model with
intensity A\, = AMy (r) and claim size distribution

A o,
Qr[YSX]WW\/() ede(y)

Hanspeter Schmidli

University of Cologne

Cox Risk Processes and Ruin



The Classical Theory
000000800000 000

The Cramér—Lundberg Model

Change of Measure

Under @, the model remains a Cramér—Lundberg model with
intensity A\, = AMy (r) and claim size distribution

A o,
Qr[YSX]WW\/() ede(y)

For the net profit we get IE,[X} — x] = —0/(r).
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The Cramér—Lundberg Model

Change of Measure

Under @, the model remains a Cramér—Lundberg model with
intensity A\, = AMy (r) and claim size distribution

A o,
Qr[YSX]WW\/() ede(y)

For the net profit we get IE,[X} — x] = —0/(r).
In particular, Q,[liminf;_ o X; = —00] =1 for §'(r) > 0.
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Ruin Probabilities

Let 7 = inf{t : X; < 0}. We let

P(x;t) =TP[r < t].
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Ruin Probabilities

Let 7 = inf{t : X; < 0}. We let

P(x;t) =TP[r < t].

P(x) =TP[r < 0] .
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The Cramér—Lundberg Model

Ruin Probabilities

Let 7 = inf{t : X; < 0}. We let
P(x;t) =TP[r < t].
P(x) =TP[r < 0] .
Then we find

Y(x; t) = P[r < t] = B, [ 007, 7 < t]le™™

and

(x) = IP[r < oo] = Eg[e*; 7 < oole R
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The Cramér—Lundberg Model

Ruin Probabilities

Let 7 = inf{t : X; < 0}. We let
P(x;t) =TP[r < t].
P(x) =TP[r < 0] .
Then we find

Y(x; t) = P[r < t] = B, [ 007, 7 < t]le™™

and

P(x) = P[r < o] = Eg[ef*™; 7 < oole ™™ = B[ ]e R .
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The Cramér—Lundberg Model

Lundberg Inequalities

From X < 0 we get

P(x) = IER[eRXT]e*RX <e Rx,
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The Cramér—Lundberg Model

Lundberg Inequalities

From X < 0 we get

P(x) = IER[eRXT]e*RX < e R

and

¢(X;XX) _ ]Er[erX-rJrO(r)T; r < Xx]efrx <e min{r—6(r)y,r}x )
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The Cramér—Lundberg Model

Lundberg Inequalities

From X < 0 we get

¥(x) = Bple™]e™™ < o™,
and
D(x; yx) = B [ 00T 1 < yxfe ™ < o= min{r=0()y.rix
Let R = sup{r —0(r)y : r = R}. Then
Rx

P(x;yx) <e ™
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The Cramér—Lundberg Model

Lundberg Inequalities

From X < 0 we get

¥(x) = Bple™]e™™ < o™,
and
D(x; yx) = B [ 00T 1 < yxfe ™ < o= min{r=0()y.rix
Let R = sup{r —0(r)y : r = R}. Then
P(x; yx) < e Bx.

Note that R > R.
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The Cramér—Lundberg Model

Lundberg Inequalities

Analogously, B

P(x) —P(x; yx) < e R
for R = sup{r —0(r)y : r < R}.
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The Cramér—Lundberg Model

Lundberg Inequalities

Analogously,

PY(x) = (x; yx) < e
for R = sup{r —0(r)y : r < R}. Also here, R > R.
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The Cramér—Lundberg Model

Lundberg Inequalities

Analogously,

P(x) —P(x; yx) < o R
for R = sup{r —0(r)y : r < R}. Also here, R > R.

It turns out that R > R if y < yp and R > R if y > yq for the
critical value

1 1
=R T IR — ¢
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The Cramér—Lundberg Model

Lundberg Inequalities

Analogously,

Y(x) — P(x; yx) < e B
for R = sup{r —0(r)y : r < R}. Also here, R > R.
It turns out that R > R if y < yp and R > R if y > yq for the

critical value
1 1

=R T IR — ¢

Moreover,

P
— )0

X9

on {7 < oo}.
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Path given {7 < oo}

T
Yox
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The Cramér—Lundberg Model

Path given {7 < yx}

yx Yox

Hanspeter Schmidli

Cox Risk Processes and Ruin



The Classical Theory
0000000000000 0e

The Cramér—Lundberg Model

The Cramér—Lundberg Approximation

From the above considerations we see that

lim (x)e™ = lim Eg[ef*].

X—00
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The Cramér—Lundberg Approximation

From the above considerations we see that

X—00

lim (x)e™ = lim Eg[ef*].

By considering the ladder times, the function
f(x) = Eg[e®* | Xo = x| fulfils a renewal equation. By the key
renewal theorem we get

. C— A
lim (x)ef = — 5
x—00 AMU(R) — ¢
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The Sparre-Andersen Model

The Sparre—Andersen Risk Model

@ x: initial capital
@ C: premium rate
@ {N.;}: Ordinary renewal process
e {Y;}: iid, independent of {N;}
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The Sparre-Andersen Model

The Sparre—Andersen Risk Model

x: initial capital

C: premium rate

{Y;}: iid, independent of {N;}

°
°

@ {N;}: Ordinary renewal process

°

e F(y): distribution function of T; — T;_
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The Sparre-Andersen Model

The Sparre—Andersen Risk Model

x: initial capital

C: premium rate

{Y;}: iid, independent of {N;}
F(y): distribution function of T; — T;

°
°

e {N;}: Ordinary renewal process

°

°

o \=(IE[T; — T_1]) 7%, Mz (r) = IE[er(T,»—T,-il)].
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The Sparre-Andersen Model

Markovisation

Let Ay = Tp,+1 — t be the time to the next claim. Then {X;, A;}
is a Markov process.
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The Sparre-Andersen Model

Markovisation

Let Ay = Tp,+1 — t be the time to the next claim. Then {X;, A;}
is a Markov process.

Let 6(r) be the unique solution to My (r)My(—60 — cr) = 1. Then
the process
{MY(r)e—r(Xt—x)—(@(r)—l—cr)At—O(r)t}

is a martingale.
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The Sparre-Andersen Model

Markovisation

Let Ay = Tp,+1 — t be the time to the next claim. Then {X;, A;}
is a Markov process.

Let 6(r) be the unique solution to My (r)My(—60 — cr) = 1. Then
the process
{MY(r)e—r(Xt—x)—(@(r)—l—cr)At—O(r)t}

is a martingale.
Define the measure Q, as

Qr[A] _ E[My(r)efr(erx)f(Q(r)chr)ATf@(r)T_ A] )
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The Sparre-Andersen Model

Markovisation

Let Ay = Tp,+1 — t be the time to the next claim. Then {X;, A;}
is a Markov process.
Let 6(r) be the unique solution to My (r)My(—60 — cr) = 1. Then

the process
{MY(r)e—r(Xt—x)—(@(r)—l—cr)At—O(r)t}

is a martingale.
Define the measure Q, as

Qr[A] _ E[My(r)efr(erx)f(Q(r)chr)ATf@(r)T_ A] )

We denote by R the positive solution to 6(r) = 0. l.e., the solution
to My (r)My(—cr) = 1.
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The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

Hanspeter Schmidli

University of Cologne

Cox Risk Processes and Ruin



The Classical Theory

[e]e]e]e] Jelele)

The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

t
My (r) = My (r) / e~ ren)s gF (s) .
0
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The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

t
My (r) = My (r) / e~ ren)s gF (s) .
0

Ruin occurs almost surely if 6/(r) > 0.
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The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

t
My (r) = My (r) / e~ ren)s gF (s) .
0

Ruin occurs almost surely if 6/(r) > 0.
The ruin probabilities can be expressed as

¥(x) = M7(—cR)Eg[eReRA e Rx
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The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

t
My (r) = My (r) / e~ ren)s gF (s) .
0

Ruin occurs almost surely if 6/(r) > 0.
The ruin probabilities can be expressed as

h(x) = Mr(—cR)Eg[eTeRA e R = IBg[efX e R
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The Sparre-Andersen Model

Ruin Probabilities

Under Q, the process remains a Sparre-Andersen model with

My (r) = My(=6(r) — cr) /0 "7 dG(y) |

t
My (r) = My (r) / e~ ren)s gF (s) .
0

Ruin occurs almost surely if 6/(r) > 0.
The ruin probabilities can be expressed as

h(x) = Mr(—cR)Eg[eTeRA e R = IBg[efX e R

Y(x; t) = B [T - < tle™™ .
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The Sparre-Andersen Model

Lundberg Inequalities

As in the classical model we find

h(x) < e’
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The Sparre-Andersen Model

Lundberg Inequalities

As in the classical model we find

h(x) < e’

Y(x; yx) < E,["7: 7 < yxlem™ <e” min{r=0(r)y,rix
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The Sparre-Andersen Model

Lundberg Inequalities

As in the classical model we find

h(x) < e’

w(X;}/X) < Er[ee(r)r;T < yx]e—rx <e min{r—0(r)y,r}x )
Again choose R = sup{r — 0(r)y : r > R}. Then

Y(x; yx) < e Rx
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The Sparre-Andersen Model

Lundberg Inequalities

As in the classical model we find

h(x) < e’

Y(x; yx) < E,["7: 7 < yxlem™ <e” min{r=0(r)y,rix
Again choose R = sup{r — 0(r)y : r > R}. Then
Y(x; yx) < e Rx
Note that R > R.

Hanspeter Schmidli

University of Cologne

Cox Risk Processes and Ruin



The Classical Theory
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The Sparre-Andersen Model

Lundberg Inequalities

As in the classical model we find

h(x) < e’

w(X;}/X) < Er[ee(r)r;T < yx]e—rx <e min{r—0(r)y,r}x )
Again choose R = sup{r — 0(r)y : r > R}. Then

Y(x; yx) < e Rx

Note that R > R. Analogously

Y(x) —P(x;yx) < e .

for R = sup{r —0(r)y : r <R} > R.
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The Sparre-Andersen Model

Lundberg Inequalities

It again turns out that R > R if y < yp and R > R if y > y for
the critical value
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The Sparre-Andersen Model

Lundberg Inequalities

It again turns out that R > R if y < yp and R > R if y > y for
the critical value

Moreover,

on {7 < oo}.
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The Sparre-Andersen Model

The Cramér—Lundberg Approximation

From the above considerations we see that

lim (x)ef® = lim Eg[e].

X—00
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The Sparre-Andersen Model

The Cramér—Lundberg Approximation

From the above considerations we see that

lim (x)ef® = lim Eg[e].

X—00

It follows again by a renewal approach that

lim ¢(x)e® = C,

X—00

where C > 0 is some constant. If §/(R) < oo then C > 0.
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The Bjork—Grandell Model

© Generalisations
@ The Bjork—Grandell Model
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The Bjérk—Grandell Model

The Ammeter Risk Model

Let {L;} be a sequence of iid positive random variables. On the
interval [/ — 1,7) let {X;} behave like a classical risk model with
claim intensity L; and claim size distribution G(y).
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Generalisations
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The Bjérk—Grandell Model

The Ammeter Risk Model

Let {L;} be a sequence of iid positive random variables. On the
interval [/ — 1,7) let {X;} behave like a classical risk model with
claim intensity L; and claim size distribution G(y).

If L; has a Gamma distribution then N is negative binomially
distributed.
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The Bjork—Grandell Model
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Generalisations
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The Bjérk—Grandell Model

The Bjork—Grandell Model

Let {L;,0;)} be a sequence of iid random vectors with distribution
function F(¢,s), where L; > 0 and o; > 0. We denote by

Si =3 410k On the interval [S;_1,S;) let {X;} behave like a
classical risk model with claim intensity L; and claim size
distribution G(y).

University of Cologne
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The Bjérk—Grandell Model

The Bjork—Grandell Model

Let {L;,0;)} be a sequence of iid random vectors with distribution
function F(¢,s), where L; > 0 and o; > 0. We denote by

Si =3 410k On the interval [S;_1,S;) let {X;} behave like a
classical risk model with claim intensity L; and claim size
distribution G(y).

We let A\t = Ljand Ay = S; — tif S;_1 <t < 5;. Then
{(Xt, At, At) is a Markov process.
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The Bjérk—Grandell Model

Change of Measure

Consider the function
o(9,r) ;== Elexp{[L(My(r) = 1) =¥ — cr—]o}] .

We let 0(r) be the unique solution to ¢(0(r),r) =1 and R be the
strictly positive solution to 6(r) = 0.
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The Bjérk—Grandell Model

Change of Measure

Consider the function
o(9,r) ;== Elexp{[L(My(r) = 1) =¥ — cr—]o}] .

We let 0(r) be the unique solution to ¢(0(r),r) =1 and R be the
strictly positive solution to 6(r) = 0.
The process

{efr(thxH»()\t(I\/Iy(r)fl)fcrf()(r))Atfé(r)t}

is a martingale.
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The Bjérk—Grandell Model

Change of Measure

Consider the function
o(9,r) ;== Elexp{[L(My(r) = 1) =¥ — cr—]o}] .

We let 0(r) be the unique solution to ¢(0(r),r) =1 and R be the
strictly positive solution to 6(r) = 0.
The process

{efr(thxH»()\t(I\/Iy(r)fl)fcrf()(r))Atfé(r)t}
is a martingale. We define the measure

Qr[A] _ ]E[C—r(Xt—x)—i-()\t(I\/ly(r)—l)—cr—@(r))At—Q(r)t_A] .

i
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The Bjérk—Grandell Model

Change of Measure

Under the new measure the process is again a Bjork—Grandell
model with

Qr[Y < X] =

1 X ,
o /O e dG(y)
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The Bjérk—Grandell Model

Change of Measure

Under the new measure the process is again a Bjork—Grandell
model with

QLY <x =g [ e a6

l ps
QIL<t,0<s]= // LMy (N=D)=er=0(0lw £ dw)
0Jo

The claim intensity is A\t My (r).
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The Bjérk—Grandell Model

Change of Measure

Under the new measure the process is again a Bjork—Grandell
model with

QLY <x =g [ e a6

l ps
QIL<t,0<s]= // LMy (N=D)=er=0(0lw £ dw)
0Jo

The claim intensity is A\t My (r).
The drift is —6'(r).
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The Bjérk—Grandell Model

The Ruin Probabilities

We can express the ruin probabilities as

P(x) = ]ER[eRXr—(AT(MY(R)—l)—CR)AT]e_RX ‘
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The Bjérk—Grandell Model

The Ruin Probabilities

We can express the ruin probabilities as

P(x) = ]ER[eRXr—(AT(MY(R)—l)—CR)AT]e_RX ‘

The finite time ruin probability becomes

L‘/)(X; t) = IEr[Cr(XT_X)—{AT(MY(r)—l)—cr—e(r)}AT-i-G(r)T; < t]C—rx )
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The Bjérk—Grandell Model

The Assumption

We need the following assumption:
Suppose there is a constant B > 0 such that

Ep[eltMy(N-D)=cr=0(}o=v) | 5 > v ] > B (as.). ()

for all v > 0.
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The Bjérk—Grandell Model

The Assumption

We need the following assumption:
Suppose there is a constant B > 0 such that

Ep[eltMy(N-D)=cr=0(}o=v) | 5 > v ] > B (as.). ()

for all v > 0.

The condition is fulfilled if IEp[oc — v | o > v, L = {] < oo for all
0 < (My(r)—1)"Y(cr +0(r)).
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The Bjérk—Grandell Model

Lundberg Inequalities

Under the assumption (<7g) one has

lim sup 1) (x)e™ < oo .

X—00
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The Bjérk—Grandell Model

Lundberg Inequalities

Under the assumption (<7g) one has

lim sup 1) (x)e™ < oo .

X—00

Under the assumption (./g) one has

lim sup ¢ (x; yx)eB* < oo .

X—00
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The Bjérk—Grandell Model

Lundberg Inequalities

Under the assumption (<7g) one has

lim sup 1) (x)e™ < oo .

X—00

Under the assumption (./g) one has

lim sup ¢ (x; yx)eB* < oo .

X—00

Under the assumption (.27%z) one has

lim sup(¢(x) — ’z/)(x;yx))ekx <00,

X—00

Here R and R are defined as above.
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The Bjérk—Grandell Model

Cramér—Lundberg Approximation

Also here we get under (2/g) and (/%) the limit

P
— )0

X9

on {7 < oo}.
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The Bjérk—Grandell Model

Cramér—Lundberg Approximation

Also here we get under (2/g) and (/%) the limit

TP
Y
X
on {7 < oo}.
If («7,) holds for some r > R then there is a constant C > 0 such
that
lim ¢(x)e® = C.
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© Generalisations

@ The Markov-Modulated Model
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The Markov-Modulated Model
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The Markov-Modulated Model

The Markov-Modulated Model

Let {J;} be a Markov chain with state space {1,2,..., ¢} and
intensity matrix n = (n;). On {J; = i} the process {X;} behaves
like a classical model with intensity L; and claim size distribution
G;. We denote by {7;} the stationary distribution of {J;}.
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The Markov-Modulated Model

The Markov-Modulated Model

Let
L(Mi(r) —1) 0 0
S(r) - 0 Lz(Mz('f) -1 (:3
0 0 L AM 4(r) 1)
and
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The Markov-Modulated Model

The Martingale

We have

IE[e_r(Xt_X)]I{Jt:j} | Jo=1i]= (et@(r)),-j .
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The Markov-Modulated Model

The Martingale

We have
IE[e_r(Xt_X)]I{Jt:j} | Jo=1i]= (et@(r)),-j .

Let 6(r) be the eigenvalue of ©(r) with the largest real part and
g(r) be the corresponding eigenvector (gi(r) > 0). Then

85:(r) _ —r(x—)—0(r)t
IE[gu, (r)]

is a martingale
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The Markov-Modulated Model

The Change of Measure

Define as before

84:(r)  —r(xe—x)—6(r)t.
[A] = B| 82 _e—r(x: A
WA =B g, (]
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The Markov-Modulated Model

The Change of Measure

Define as before

_ glri(r)efr(xﬁx)fe(r)t.
A =B, ) Al

Under Q, the process {(X;, J:)} remains a Markov modulated risk

model with claim intesities L;M;(r), claim size distribution

QY <y|J=i=M(r))?! /y e” dGi(z)

0

and intensity matrix diag((g;(r))~*)n diag(gi(r)).
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The Markov-Modulated Model

The Change of Measure

Define as before

_ glri(r)efr(xﬁx)fe(r)t.
A =B, ) Al

Under Q, the process {(X;, J:)} remains a Markov modulated risk
model with claim intesities L;M;(r), claim size distribution

QY <y|J=i=M(r))?! /Oy e” dGi(z)

and intensity matrix diag((g;(r)) *)ndiag(gi(r)). In particular, the
drift is —6'(r).
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The Markov-Modulated Model

The Ruin Probabilities

Let R be the strictly positive solution to 6(r) = 0. Then

RX;

(]
=E R)|IE —Rx
() = Erlgn(RNER |~ Je™™.
erX-r+9(r)T
(i) = Eplgy (NI, |7 < tle™.
&-(r)
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The Markov-Modulated Model

The Ruin Probabilities

Let R be the strictly positive solution to 6(r) = 0. Then

eRXT
U(x) = Eplgy (R)ER | —— e,
&J-(R)
erX-r+9(r)T
(i) = Eplgy (NI, |7 < tle™.
& (r)

Lundberg inequalities and Cramér—Lundberg approximation follow
as before.
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Cox Models
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Cox Models

Cox Model with Piecewise Constant Intensities

Let {(Ji,0;)} be some Markov chain (with infinite state space),
where o; > 0. We define S; = 2}21 oi. On [S5i_1, S;) the process
{X¢} behaves like a classical model with intensity L(J;) > 0 and

claim size distribution G(y; J;).
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Cox Models

Cox Model with Piecewise Constant Intensities

Let {(Ji,0;)} be some Markov chain (with infinite state space),
where o; > 0. We define S; = 2}21 oi. On [S5i_1, S;) the process
{X¢} behaves like a classical model with intensity L(J;) > 0 and

claim size distribution G(y; J;).

Under additional conditions (for ergodicity) the Lundberg
inequalities and the Cramér-Lundberg approximation holds.
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Cox Models

Diffusion Intensities

Let {Z;} be a diffusion process following the stochastic differential
equation
dZt = b(Zt) th + a(Zt) dt

for some Brownian motion {W;}. The claim number process {N;}
is a compound Poisson process with rate {{(Z;)}.
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Cox Models

Diffusion Intensities

Let {Z;} be a diffusion process following the stochastic differential
equation

dZt = b(Zt) th + a(Zt) dt

for some Brownian motion {W;}. The claim number process {N;}
is a compound Poisson process with rate {{(Z;)}.

The process {g(Z;)e "Xe=x)=0(Nt} is a martingale if

b (2)g"(2) + a(2)g'(2) + [U(2)(My(r) = 1) — 0§ — cr—]g(z) = 0.
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The Change of Measure

Consider the measure
IE[g(ZT)efr(Xfo)fﬁ(r)T; A]

A= Flg(2)]
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Cox Models

The Change of Measure

Consider the measure
IE[g(ZT)efr(Xfo)fﬁ(r)T; A]
E[g(Z)]

The process ({X¢, Z;)} remains a Cox model with claim size
distribution

QA =

QLY <x = (M(r))* [ "7 dG(y) |
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Cox Models

The Change of Measure

Consider the measure
IE[g(ZT)efr(Xfo)fﬁ(r)T; A]
E[g(Z)]

The process ({X¢, Z;)} remains a Cox model with claim size
distribution

QA =

QLY <x = (M(r))* [ "7 dG(y) |

claim intensity ¢(Z;)My(r),
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Cox Models

The Change of Measure

Consider the measure
IE[g(ZT)efr(Xfo)fﬁ(r)T; A]
E[g(Z)]

The process ({X¢, Z;)} remains a Cox model with claim size
distribution

QA =

QLY <x = (M(r))* [ "7 dG(y) |

claim intensity ¢(Z:)My(r), and generator of the diffusion

2 ./
Q[f:ga+bgf/+%b2f”_
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The Ruin Probabilities

The drift of {X;} is again —6'(r).
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Cox Models

The Ruin Probabilities

The drift of {X;} is again —6'(r).
Suppose there is a R > 0 such that §(R) = 0. The ruin
probabilities can be expressed as

RX,
efo ,

V() = Erlg(Z)Br| |
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Cox Models

The Ruin Probabilities

The drift of {X;} is again —6'(r).
Suppose there is a R > 0 such that §(R) = 0. The ruin
probabilities can be expressed as

RX:

V() = Erlg(Z)Br | o™
erX-r+9(r)‘r o
U t) = Eplg(Zo)Br |~ =i < tle ™™
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The Lundberg Inequalities

If g(z) is bounded away from zero we obtain as before

IEIP[g(ZO)]e—Rx

¥(x) < inf g(z)

9
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The Lundberg Inequalities

If g(z) is bounded away from zero we obtain as before

IEIP[g(ZO)]e—Rx

v < inf g(z) )
Y(x;yx) < ]Eiff[i(é‘)’)]e—fex ’
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The Lundberg Inequalities

If g(z) is bounded away from zero we obtain as before

IEIP[g(ZO)]e—Rx
inf g(z)

Ep [g(Zo)]e—gx
inf g(2)

Erle(Z)]  r.
inf g(2)

P(x) <

9

Y(x; yx) <

9

P(x) = p(xyx) <

Y

where R and R are defined as before.
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The Lundberg Inequalities

If g(z) is bounded away from zero we obtain as before

IEIP[g(ZO)]e—Rx
inf g(z)

Ep[g(20)] - rx
- e
inf g(z)
Er(g(Z)] _r«
- €
inf g(2)
where R and R are defined as before. Ifx <yo=1/0'(R)
(y > Yo) then R> R (R > R).

P(x) <

9

P(x; yx) <

9

P(x) = p(xyx) <

Y
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The Cramér—Lundberg Approximation

If we further suppose that {Z;} is Harris recurrent, then there is a
constant C such that

lim (x)ef* = C.
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Ornstein—Uhlenbeck Intensities

Let a(z) = —az, b(z) = b > 0 and /(z) = Z°.

24 1o ;"
Iy \|‘ \' Nq
i J “r ) J“, ‘|‘ W V ﬂ .I { ‘h ‘ |
1 [ ] | i ‘ | | | \ |
0 uv ' M'“v*"'h‘w"j‘\w‘ ‘UU U V'u WJ M K‘.M/ " .“Mu V'Jhupm‘r WH L,ljuJ L/ MH}H J[
E: 2 4 6 8 10
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The function g(z)

kz?

Trying g(z) = ke we find

a— /a2 —2b2(My(r) — 1)

k= 2b2 ’
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The function g(z)

Trying g(z) = ek we find

a— /a2 —2b2(My(r) — 1)
2b2 '

k =

_ 2 22/\// -1
Q(r):a V2 i; v(r) —1) —cr.
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The function g(z)

kz?

Trying g(z) = ke we find

a— /a2 —2b2(My(r) — 1)

k =
2b2 ’

o) - 2= VEBWD

Choosing x such that IE[g(Zp)] = 1 gives

L \/a + /@ —2b2(My(r) — 1)

2a
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The Diffusion Under Q,

For the diffusion we find

_akZ? 2 kz?
ff(z) — ke az + b 2kzre F(2) + %bzf”(z)

2
Hekz

= —(a—2kb%)zf'(z) + 3b°f"(2).
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The Classical Models

The Sparre—Andersen Risk Model

Let B(x) be the ladder height distribution. Then for p = 1(0)

B(x) = Zp - B(x)) .
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The Classical Models

The Sparre—Andersen Risk Model

Let B(x) be the ladder height distribution. Then for p = 1(0)
Y(x) = Zp ~ B(x)) -

If B(x) is subexponential we find

V) ~ (1= B().
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The Classical Models

The Sparre—Andersen Risk Model

Let B(x) be the ladder height distribution. Then for p = 1(0)
Y(x) = Zp ~ B(x)) -

If B(x) is subexponential we find
90) ~ (1= B(x) -
1—p

In the Sparre-Andersen Risk model

1—B(x) ~pu ' [(1— G(y)) dy, provided p~t [(1 — G(y)) dy
is subexponential.
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Generalisations

The Bjork—Grandell Model

If for large initial capital ruin occurs then the surplus will not
recover until the next change of the intensity provided oL is not
too large.
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Generalisations

The Bjork—Grandell Model

If for large initial capital ruin occurs then the surplus will not
recover until the next change of the intensity provided oL is not

too large.
Suppose there is a § > 0 such that IE[e’!] < co. Then

E[oL]
Y0~ EeT - B

| a-cma.

provided 111 [;(1 — G(y)) dy is subexponential.
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Generalisations

The Markov-Modulated Model

Let H(x) be a distribution such that the integrated tail is a
subexponential distribution. Suppose that

(1 - Gi(x)) ~ ai(1 — H(x)) and that a = 37, ;L;a; > 0. Then
we find

i(x) ~ ° - Hy) dy -
)~ | a-ronay

University of Cologne

Hanspeter Schmidli

Cox Risk Processes and Ruin



Heavy Tails

[e]e]e] )

Generalisations

Ornstein—Uhlenbeck Intensity

For Ornstein—Uhlenbeck intensities regeneration is fast. Thus also
here

b?/(2a) 10
P(x) ~ c—pb2/(2a)/x (1-G(y)) dy

= s [a-emay

2ac — ub?
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Introduction

Proportional Reinsurance

Consider the classical model and suppose the insurer can buy
proportional reinsurance with retention level {b;}. Then

t
th:x+/ c(bs)ds— > br,_Y;,
0 -

where c(b) is the part of the premium left for the insurer. We look
for 1(x) = inf, IP[inf; X < 0].
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Introduction

The Hamilton—Jacobi—Bellman Equation

1(x) solves then

g9

inf (b)Y (x) + /\[/ B(x — by) dG(y) — ()] =0.

0
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Introduction

The Hamilton—Jacobi—Bellman Equation

1(x) solves then

g9

inf (b)Y (x) + /\[/ B(x — by) dG(y) — ()] =0.

0

The optimal strategy is b; = b*(X}), where b(x) minimises the
left hand side of the equation.
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Introduction

Optimal Investment

Suppose the insurer can invest into a risky asset
Zy = Zyexp{(m — 20°) + o W,} .
Using a strategy {A:} the surplus fulfils
dXA = (c + mA;) dt + oA AW, — dS; .

We again want to minimise v)(x) = inf 4 IP[inf, X/ < 0].
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Introduction

The Hamilton—Jacobi—Bellman Equation

Then 9(x) fulfils

0 = ir;\f 12 A" (x) + (c + mAYY' (x)

+)\[/0 T h(x - y) dG(y) — v(x)
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Introduction

The Hamilton—Jacobi—Bellman Equation

Then 9(x) fulfils

0 = ir;\f 12 A" (x) + (c + mAYY' (x)

A0l ) 46() - )]

21/)/

C’(ﬁl (X) B 2¢//

+A/ B(x — y) dG(y) — H(x)
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Introduction

The Hamilton—Jacobi—Bellman Equation

Then 9(x) fulfils
0 = ir;\f 12 A" (x) + (c + mAYY' (x)

A0l ) 46() - )]

21/)/
2¢//
The optimal strategy is A; = A*(XA) = —my/(X2) /(20" (XA).

= c(x)— +A/ Y(x —y) dG(y) — ¥(x)
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Introduction

The Hamilton—Jacobi—Bellman Equation

Then 9(x) fulfils

0 = ir;\f 12 A" (x) + (c + mAYY' (x)

A0l ) 46() - )]
21/)/
Qwu

The optimal strategy is A; = A*(XA) = —my/(X2) /(20" (XA).
Note that v)(x) becomes convex.

= c(x)— +A/ Y(x —y) dG(y) — ¥(x)
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Lundberg Bound

For a constant reinsurance strategy b; = b the Lundberg exponent
R(b) is the solution to

A(My(br) —1) —c(b)r=0.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Lundberg Bound

For a constant reinsurance strategy b; = b the Lundberg exponent
R(b) is the solution to

A(My(br) —1) —c(b)r=0.

Let R = sup, R(b) = R(b*).
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Lundberg Bound

For a constant reinsurance strategy b; = b the Lundberg exponent
R(b) is the solution to

A(My(br) —1) —c(b)r=0.
Let R = sup, R(b) = R(b*). Then R is the solution to

ir;f MMy (br) —1) —c(b)r =0.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Lundberg Bound

For a constant reinsurance strategy b; = b the Lundberg exponent
R(b) is the solution to

A(My(br) —1) —c(b)r=0.
Let R = sup, R(b) = R(b*). Then R is the solution to

ir;f MMy (br) —1) —c(b)r =0.

We find 1(x) < e~
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Martingale

Let 0(b) = A(My(bR) — 1) — c(b)R > 0. Then

M, = exp{—R(Xt - /Ot 0(b*(X.)) ds}

is a martingale.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Change of Measure

Define the measure Qr[A] = IE[M7; A]. Then {X;} is a PDMP
with
intensity: AMy (Rb(x)),
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Change of Measure

Define the measure Qr[A] = IE[M7; A]. Then {X;} is a PDMP
with

intensity: )\/\/Iy(Rb( ),

claim size distribution: ;- vy Jo e Rb(x)z 4G(2),

University of Cologne
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Change of Measure

Define the measure Qr[A] = IE[M7; A]. Then {X;} is a PDMP
with
intensity: )\/\/Iy(Rb( ),

claim size distribution: [J efPz 4G (2),

My(b(x R)
premium rate: c(b(x)).
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Change of Measure

Define the measure Qr[A] = IE[M7; A]. Then {X;} is a PDMP
with

intensity: )\/\/Iy(Rb( ),

claim size distribution: ;- vy Jo e Rb(x)z 4G(2),

premium rate: c(b(x)).

The drift of the process is negative.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Ruin Probability

The function 1(x) can be expressed as

¥(x) = Eg {exp{RXT—i-/OT 0(b*(Xs)) dsHe*RX > Egl[ef*r]e R .

As for the classical model it follows that ¢(x) > Ce™F~.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the lim sup

Let f(x) = ¢(x)ef and g(x) = —¢/(x)e ™ = Rf(x) — f(x).
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Cramér-Lundberg Approximations

Optimal Reinsurance: the lim sup

Let f(x) = 1(x)ef and g(x) = —¢'(x)e™ R = Rf(x) — f'(x).
Then, using the definition of R and the optimality of b(x)

/0' “(g(x — 2) — g())(1 — Gz/b"))e" dz

> /00(1 — G(z/b%))eR? dzg(x) — 6(0)(1 — G(x/b*))e" .
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Cramér-Lundberg Approximations

Optimal Reinsurance: the lim sup

Let f(x) = 1(x)ef and g(x) = —¢'(x)e™ R = Rf(x) — f'(x).
Then, using the definition of R and the optimality of b(x)

/0' “(g(x — 2) — g())(1 — Gz/b"))e" dz
> /Oo(l — G(2/b"))eR? dzg(x) — 6(0)(1 — G(x/b*))eRx .

We conclude that for x large enough, g(x) stays close to
limsup g(x) on an arbitrary long interval.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the lim sup

Let f(x) = 1(x)ef and g(x) = —¢'(x)e™ R = Rf(x) — f'(x).
Then, using the definition of R and the optimality of b(x)

| (e = 2) = ()1 = G/ az

> / (1 — G(z/b%))ef? dzg(x) — 6(0)(1 — G(x/b*))e .
We conclude that for x large enough, g(x) stays close to
limsup g(x) on an arbitrary long interval.

Thus also for x large enough, f(x) stays close to limsup f(x) on an
arbitrary long interval.
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Cramér-Lundberg
Approximation

Let £ = limsup f(z). Choose > 0, > 0 and xp, such that
f(x) > & —efor x € [xo— B,x]. Then for T =inf{t: X < xo}

fx) = Ep [f(xT) exp{/OT f(b*(X,)) dsH
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Cramér-Lundberg
Approximation

Let £ = limsup f(z). Choose > 0, > 0 and xp, such that
f(x) > & —efor x € [xo— B,x]. Then for T =inf{t: X < xo}

fx) = Ep [f(xT) exp{/OT f(b*(X,)) dsH
Eg[f(XT)]

>
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Cramér-Lundberg
Approximation

Let £ = limsup f(z). Choose > 0, > 0 and xp, such that
f(x) > & —efor x € [xo— B,x]. Then for T =inf{t: X < xo}

f(x) = IEg|f(XT)exp / 0(b dsH
IER[f(XT)] > (-1~ 5)

>
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Cramér-Lundberg Approximations

Optimal Reinsurance: the Cramér-Lundberg
Approximation

Let £ = limsup f(z). Choose > 0, > 0 and xp, such that
f(x) > & —efor x € [xo— B,x]. Then for T =inf{t: X < xo}

f(x) = IEg|f(XT)exp / 0(b dsH
IER[f(XT)] > (-1~ 5)

A%

Therefore, lim f(x) = liminf f(x) = &.
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Cramér-Lundberg Approximations

Optimal Reinsurance: Asymptotics of the Strategy

We have liminf f'(x) = liminf(Rf(x) — g(x)) = 0.
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Cramér-Lundberg Approximations

Optimal Reinsurance: Asymptotics of the Strategy

We have liminf f'(x) = liminf(Rf(x) — g(x)) = 0.
From the HJB equation we find that for x large enough

c(b™(x))f'(x) < =€0(b"(x)) + ¢ .
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Cramér-Lundberg Approximations

Optimal Reinsurance: Asymptotics of the Strategy

We have liminf f'(x) = liminf(Rf(x) — g(x)) = 0.
From the HJB equation we find that for x large enough

c(b™(x))f'(x) < =€0(b"(x)) + ¢ .

Thus limsup f'(x) = 0.
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Cramér-Lundberg Approximations

Optimal Reinsurance: Asymptotics of the Strategy

We have liminf f'(x) = liminf(Rf(x) — g(x)) = 0.
From the HJB equation we find that for x large enough

c(b™(x))f'(x) < =€0(b"(x)) + ¢ .

Thus limsup f'(x) = 0.
Therefore 6(b*(x)) — 0. If b* is unique, then lim b*(x) = b*.
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Cramér-Lundberg Approximations

Optimal Investment: the Lundberg Bound

For a constant investment strategy A; = A let R(A) be the
Lundberg coefficient, that is the solution to

)\(My(r) — 1) — (c+ mA)r—|- %A202r2 —0.
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Cramér-Lundberg Approximations

Optimal Investment: the Lundberg Bound

For a constant investment strategy A; = A let R(A) be the
Lundberg coefficient, that is the solution to

)\(My(r) — 1) — (c+ mA)r—|- %A202r2 —0.
Let R = supy R(A). Then R solves

0 = ir)‘f)\(My(r)—1)—(c+mA)r+%A2a2r2
m2

= AMMy(r)—1)—cr— 592 °
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Cramér-Lundberg Approximations

Optimal Investment: the Lundberg Bound

For a constant investment strategy A; = A let R(A) be the
Lundberg coefficient, that is the solution to

)\(My(r) — 1) — (c+ mA)r—|- %A202r2 —0.
Let R = supy R(A). Then R solves

0 = ir)‘f)\(My(r)—1)—(c+mA)r+%A2a2r2
2
= AMy(r)—1)—cr — 2% .

Note that R = R(A*) for A* = m/(c2R).
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Cramér-Lundberg Approximations

Optimal Investment: the Lundberg Bound

For a constant investment strategy A; = A let R(A) be the
Lundberg coefficient, that is the solution to

)\(My(r) — 1) — (c+ mA)r—|- %A202r2 —0.
Let R = supy R(A). Then R solves

0 = ir)‘f)\(My(r)—1)—(c+mA)r+%A2a2r2
2
= AMy(r)—1)—cr — 2% .

Note that R = R(A*) for A* = m/(c?R). We have 9(x) < e,
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Cramér-Lundberg Approximations

Optimal Investment: the Cramér—Lundberg Approximation

Analogously to before we get

lim (x)e® = ¢

X—00

for some £ € (0,1),
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Cramér-Lundberg Approximations

Optimal Investment: the Cramér—Lundberg Approximation

Analogously to before we get

lim (x)e® = ¢

X—00

for some ¢ € (0,1), and

lim A*(x) = A*.

X—00
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Heavy Tails

@ Minimal Ruin Probabilities

@ Heavy Tails
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Heavy Tails

Optimal Investment: Subexponential Claims

Suppose that G € §*; i.e., that

- [* (1= G(2))(1 - G(x - 2))
lim /o -G dz

X—00
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Heavy Tails

Optimal Investment: Subexponential Claims

Suppose that G € §*; i.e., that

- [* (1= G(2))(1 - G(x - 2))
lim /o - G0 d

z=2u.

X—00

Let k = 20°)\/m?. Assume that

im () = lim —2)

2 _—9.
y—00 y—00 ]_ — G(y)
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Optimal Investment: the Function g(x)

Let g(x) = —¢'(x)/(1 — G()).
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Optimal Investment: the Function g(x)

m2 X
i) gl +20(0)
)%
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Optimal Investment: the Function g(x)

Let g(x) = —¢'(x)/(1 — G(x)). Then
ITI2 X
—22g(),() — cg(x) + A3(0)
T ) - £
g(x)

It follows, as expected, that lim,_.., g(x) = 0.
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Optimal Investment: the Asymptotics

From the HJB equation we find that

im V' (x)? 202X\
oo (x)(1-G(x))  m?
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Optimal Investment: the Asymptotics

From the HJB equation we find that

im V' (x)? 202X\
oo (x)(1-G(x))  m?

K .

Integration shows

o0 1
P(x) ~ /@/X v 1 ; dy .
fem®
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Optimal Investment: the Asymptotics

From the HJB equation we find that

im V' (x)? 202X\
oo (x)(1-G(x))  m?

Integration shows

o 1
P(x) ~ K / v 1 dy .
J X d
e

By tail equivalence the results holds for all G € S*.
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Optimal Investment: Simpler Asymptotics

Suppose that G € MDA(exp{—x"“}). Then

k(o +1)

P(x) ~ (1-6(x)-
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Optimal Investment: Simpler Asymptotics

() ~ w1 — G(x)).
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Optimal Investment: Asymptotics of A(x)

We obtain the behaviour of A(x)

A(X)Nn;/oxi_c(x)dz.
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Optimal Investment: Asymptotics of A(x)

We obtain the behaviour of A(x)

m [*1—G(x)
If G € MDA(exp{—x"%}), then

. Ax) m
lim = ,
x—00 X o?(a+1)
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Optimal Investment: Asymptotics of A(x)

We obtain the behaviour of A(x)

m [*1—G(x)
If G € MDA(exp{—x"%}), then

. A(x) m
lim = ,
x—00 X o?(a+1)

If G € MDA(exp{—e™*}), then

lim A(x)a(x) =

X—00

QN‘ 3

In particular, A(x)/x tends to zero.
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Optimal Reinsurance: MDA(exp{—x"*})

Similar methods and technical considerations yield

lim $x) —inf 2
A G@)dz b (e(B) )
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Heavy Tails

Optimal Reinsurance: MDA(exp{—x"*})

Similar methods and technical considerations yield

lim $x) —inf 2
A G@)dz b (e(B) )

Let b* an argument where the inf is taken. If b* is unique we get
also
lim b(x) = b".

X—00
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Optimal Reinsurance: MDA(exp{—e™*})

Suppose that

(A -6(2)A-G6(x—2)) .
I|m/0 -Gl dz =2u

X—00

and that the distribution tail 1 — G(x) is of rapid variation. Let
= inf{b: c(b) > Aub}. Then for any b > by

lim w(x)
e (1 G(2/b)) dz
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Optimal Reinsurance: MDA(exp{—e™*})

Suppose that
(1 -G(2)A-G(x—2) .
X"l“oo/o 1- G(x) dz =2p

and that the distribution tail 1 — G(x) is of rapid variation. Let
= inf{b: c(b) > Aub}. Then for any b > by

lim 1/)()()
x=o0 [*(1~ G(z/b)) dz

For the strategy we obtain that limsup, .. b(x) = bg.
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