Statistical inference for Rényi entropy

David Källberg

Department of Mathematics
and Mathematical Statistics
Umeå University
Coauthor

Oleg Seleznjev
Department of Mathematics and Mathematical Statistics
Umeå University
Outline

- Introduction
- Measures of uncertainty
- U-statistics
- Estimation of entropy
- Numerical experiment
- Conclusion
• A system described by probability distribution \mathcal{P}
• Only partial information about \mathcal{P} is available, e.g. the mean
• A measure of uncertainty (entropy) in \mathcal{P}
• What \mathcal{P} should we use if any?
Why entropy?

The entropy maximization principle: choose \mathcal{P}, satisfying given constraints, with maximum uncertainty.

Objectivity: we don’t use more information than we have.
Measures of uncertainty. The Shannon entropy.

- Discrete $\mathcal{P} = \{ p(k), k \in D \}$
 \[
 h_1(\mathcal{P}) := - \sum_k p(k) \log p(k)
 \]

- Continuous \mathcal{P} with density $p(x), x \in \mathbb{R}^d$
 \[
 h_1(\mathcal{P}) := - \int_{\mathbb{R}^d} \log (p(x)) p(x) dx
 \]
Measures of uncertainty. The Rényi entropy.

A class of entropies. Of order $s \neq 1$ given by

- **Discrete $\mathcal{P} = \{p(k), k \in D\}$**

 $$h_s(\mathcal{P}) := \frac{1}{1 - s} \log \left(\sum_k p(k)^s \right)$$

- **Continuous \mathcal{P} with density $p(x), x \in \mathbb{R}^d$**

 $$h_s(\mathcal{P}) := \frac{1}{1 - s} \log \left(\int_{\mathbb{R}^d} p(x)^s dx \right)$$
The Rényi entropy satisfies axioms on how a measure of uncertainty should behave, Rényi (1970).

For both discrete and continuous \mathcal{P}, the Rényi entropy is a generalization of the Shannon entropy, because

$$\lim_{q \to 1} h_q(\mathcal{P}) = h_1(\mathcal{P})$$
Non-parametric estimation of integer order Rényi entropy, for discrete and continuous \mathcal{P}, from sample $\{X_1, \ldots X_n\}$ of \mathcal{P}-iid observations.
Consistency of nearest neighbor estimators for any s, Leonenko et al. (2008)

Consistency and asymptotic normality for quadratic case $s=2$, Leonenko and Seleznjev (2010)
For a \mathcal{P}-iid sample $\{X_1, \ldots, X_n\}$ and a symmetric kernel function $h(x_1, \ldots, x_m)$

$$\mathbb{E} h(X_1, \ldots, X_m) = \theta(\mathcal{P})$$

The U-statistic estimator of θ is defined as:

$$U_n = U_n(h) := \binom{n}{m}^{-1} \sum_{1 \leq i_1 < \ldots < i_m \leq n} h(X_{i_1}, \ldots, X_{i_m})$$
U-statistics: properties

- Symmetric, unbiased
- Optimality properties for large class of \mathcal{P}
- Asymptotically normally distributed
Estimation, continuous case

Method relies on estimating functional

\[q_s := \int_{\mathbb{R}^d} p^s(x) \, dx = \mathbb{E}(p^{s-1}(X)) \]
Estimation, some notation

- $d(x, y)$ the Euclidean distance in \mathbb{R}^d
- $B_\epsilon(x) := \{y : d(x, y) \leq \epsilon\}$ ball of radius ϵ with center x.
- b_ϵ volume of $B_\epsilon(x)$
- $p_\epsilon(x) := P(X \in B_\epsilon(x))$ the ϵ-ball probability at x
When $p(x)$ bounded and continuous, we rewrite
\[
q_s = \lim_{\epsilon \to 0} \frac{E(p_{\epsilon}^{s-1}(X))}{b_{\epsilon}^{s-1}}
\]

So, unbiased estimate of $q_{s,\epsilon} := E(p_{\epsilon}^{s-1}(X))$ leads to asymptotically unbiased estimate of q_s as $\epsilon \to 0$.

Estimation of $q_{s, \epsilon}$

For $s = 2, 3, 4, \ldots$, let

\[l_{ij}(\epsilon) := I(d(X_i, X_j) \leq \epsilon) \]

\[\tilde{l}_i(\epsilon) := \prod_{1 \leq j \leq s, j \neq i} l_{ij}(\epsilon) \]

Define U-statistic $Q_{s,n}$ for $q_{s,\epsilon}$ by kernel

\[h_s(x_1, \ldots, x_s) := \frac{1}{s} \sum_{i=1}^{s} \tilde{l}_i(\epsilon) \]
Denote by $\tilde{Q}_{s,n} := Q_{s,n}/b_\epsilon^{s-1}$ an estimator of q_s and by $H_{s,n} := \frac{1}{1-s} \log (\max (\tilde{Q}_{s,n}, 1/n))$ corresponding estimator of h_s.
Assume $\epsilon = \epsilon(n) \to 0$ as $n \to \infty$

Let $\nu_{s,n}^2 := \text{Var}(\tilde{Q}_{s,n})$

$\nu_{s,n}^2 \to 0$ as $n\epsilon^d \to a \in (0, \infty]$, so we get

Theorem

Let $n\epsilon^d \to a$, $0 < a \leq \infty$ and $p(x)$ be bounded and continuos. Then $H_{s,n}$ is a consistent estimator of h_s
Denote by $H^\alpha(K)$, $0 < \alpha \leq 2$, $K > 0$, a linear space of continuous functions in \mathbb{R}^d satisfying α-Hölder condition if $0 < \alpha \leq 1$ or if $1 < \alpha \leq 2$ with continuous partial derivatives satisfying $(\alpha - 1)$-Hölder condition with constant K.
Asymptotic normality

When \(n \epsilon^d \to \infty \), we have \(v_{s,n}^2 \sim s(q_{2s-1} - q_s^2)/n \)

Let \(K_{s,n} = \max(s(\tilde{Q}_{2s-1,n} - \tilde{Q}_{s,n}^2), 1/n) \)

\(L(n) > 0, n \geq 1 \) is a slowly varying function as \(n \to \infty \)

Theorem

Let \(p^{s-1}(x) \in H^\alpha(K) \) for \(\alpha > d/2 \). If \(\epsilon \sim L(n)n^{-1/d} \) and \(n \epsilon^d \to \infty \), then

\[
\sqrt{n} \frac{\tilde{Q}_{s,n}(1 - s)}{\sqrt{K_{s,n}}} (H_{s,n} - h_s) \xrightarrow{D} N(0, 1)
\]
Numerical experiment

- χ^2 distribution, 4 degrees of freedom. $h_3 = -\frac{1}{2} \log(q_3)$, where $q_3 = 1/54$
- 300 simulations, each of size $n = 500$.
- Quantile plot and histogram supports standard normality.
Normal Q–Q Plot

Sample Quantiles vs. Theoretical Quantiles
Asymptotically normal estimates possible for integer order Rényi entropy.
References

