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The outline of the tutorial is as follows.

Part I introduces and explains the concept of regularly varying random variables.

This begins with the Pareto distribution and ends with random variables taking values
in rather general metric spaces.

One important point is the close connection between regular variation and weak con-
vergence of measures. The whole box of tools from weak convergence theory is avail-
able.

Part II builds upon Part I and investigates extremes for stochastic processes.

This begins with Lévy processes, continues to stochastic integral processes and ends
with stochastic differential equations driven by Lévy noise.
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Simulations of Compound Poisson processes fitted to log-price data.
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Simulated sample paths of Compound Poisson processes with normally distributed
jumps (left) and Student’s t(4) distributed jumps (middle), and the log-price process
of the DAX (right).
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Large deviations heuristics: rare events occur in the most likely way.
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Simulated sample paths of Compound Poisson processes with normally distributed
jumps (left) and Student’s t(4) distributed jumps (right) conditioned on the supremum
being large (> 4). Comparing the conditional tail probabilities we find, for λ > 1,

P(X > λx | X > x) ∼ 1

λ
e−(λ2−1)x2/2σ2

vs. P(X > λx | X > x) ∼ λ−4

as x →∞. Many small upwards jumps vs. one big jump.
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Dataset consisting of claims in million Danish Kroner from fire insurance in Denmark.
We observe that there are a few claims much larger the ’every-day’ claim. This sug-
gests that the claims have a heavy-tailed distribution.
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How do we estimate P(X > 100)? Idea: scaling of an empirical estimate.

P(X > λx) = P(X > λx | X > x)P(X > x) ≈ c(λ)nx/n,

where nx/n is the empirical estimate of P(X > x). We must take x large enough so
that P(X > λx | X > x) ≈ c(λ) but also small enough so that the empirical estimate
nx/n has small variance.
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Regularly varying random variables

If X is a non-negative random variable satisfying

lim
x→∞P(X > λx | X > x) = c(λ) > 0

for all λ in some interval (a, b) with a ≥ 1, then there exists an α > 0 such that

lim
x→∞P(X > λx | X > x) = λ−α for all λ > 1

and X is said to be regularly varying with index α. In this case we can write

P(X > x) = L(x)x−α,

where L ≥ 0 has the property limx→∞L(λx)/L(x) = 1.

The canonical X is a Pareto(α)-distributed X (L(x) = 1 for x > 1).

It holds that E[Xβ] < ∞ if β < α and E[Xβ] = ∞ if β > α.
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Sums

If X1, . . . , Xn are independent and regularly varying, then

P(X1 + · · ·+ Xn > x) ∼ P(X1 > x) + · · ·+ P(Xn > x) as x →∞,

where ∼ means that RHS/LHS → 1. In particular, if the Xks are iid, then

P(X1 + · · ·+ Xn > x) ∼ nP(X1 > x) ∼ P(max
k

Xk > x) as x →∞.

A similar result holds if we let the number of terms grow: if α > 1, then

P(X1 + · · ·+ Xn − nE[X1] > x) ∼ nP(X1 > x) as n →∞
for x ≥ γn with γ > 0 arbitrary.

If a sum takes a large value x∗, then precisely one of its terms is large ≈ x∗ and the
rest take normal values:

P
(
max

k
Xk > x |

∑

k

Xk > x

)
=
P(maxk Xk > x)

P(∑
k Xk > x)

→ 1 as x →∞.
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Products

If A ≥ 0 and X are independent, E[Aα+δ] < 0 and P(X > x) = L(x)x−α, then

P(AX > x)

P(X > x)
=

∫ P(aX > x)

P(X > x)
dFA(a)

∼
∫

aαdFA(a) = E[Aα] as x →∞.

For iid copies X1, . . . , Xn and independent A1, . . . , An independent of the Xks,

P
( n∑

k=1

AkXk > x

)
∼

n∑

k=1

P(AkXk > x) ∼
n∑

k=1

E[Aα
k ]P(X > x)

=
( n∑

k=1

E[Aα
k ]

1

n

)
nP(X > x)

∼ E[Aα
U ]P(X1 + · · ·+ Xn > x) as x →∞,

where U is uniformly distributed on {1, . . . , n}.

7



A closer look at the definition

The definition of regular variation was the convergence

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= lim

x→∞P(X ∈ xA | X ∈ xE) = c(A)

for E = (1,∞) and all A = (λ,∞), λ > 1, and that c(A) > 0 for these As.

This is equivalent to the convergence

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= µ(A)

for all Borel sets A ⊂ [0,∞) bounded away from 0 (means 0 /∈ A−, the closure of A)
and some non-zero measure µ on (0,∞).

Furthermore, it follows that µ is given by µ(A) =
∫
A x−α−1dx.
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Regular variation in Rn

For a random vector X in Rn we can define regular variation in the same way: there
exists a non-zero measure µ on Rn \ {0} and a Borel set E bounded away from 0

such that

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= µ(A)

for all Borel sets A bounded away from 0 such that µ(∂A) = 0 (µ-continuity sets,
∂A = boundary = closure− interior).

We can always take E to be the complement of a ball centered at 0.

It follows that µ has the following scaling property: there exists an α > 0 such that

µ(λA) = λ−αµ(A)

for all λ > 0 and all Borel sets A. In particular, µ is an infinite measure.
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Why only convergence for µ-continuity sets?

Take X = (X1, X2) with X1 and X2 independent and Pareto(α)-distributed. Then µ

concentrates its mass on the coordinate axis:

P(X ∈ x[(−ε, ε)× (λ,∞)])

P(|X| > x)
=
P(|X1| < xε)P(X2 > λx)

P(|X| > x)
∼ P(X2 > λx)

P(X2 > x)

so µ((−ε, ε)× (λ,∞)) = µ({0} × (λ,∞)) = λ−α. However,

P(X ∈ x[{0} × (λ,∞)])

P(|X| > x)
= 0 6= µ({0} × (λ,∞)).

With A = {0} × (λ,∞) we have

∂A = A− \A◦ = A− = {0} × [λ,∞),

µ(∂A) = λ−α > 0 and P(X ∈ ∂A) = 0.

The limit measure µ can assign positive mass to rays from the origin even though this
is not so for the distribution of X.
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Simulations of a bivariate Pareto(3)-distribution (independent components).
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Convergence determining classes

How do you show the convergence

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= µ(A)

for all µ-continuity sets bounded away from 0?

There are a lot of such sets...we cannot go through them all.

Fortunately it is sufficient to check the convergence for sets A is some suitable con-
vergence determining class.

Examples of convergence determining classes are sets of µ-continuity sets of the form

Vλ,S = {x : |x| > λ, x/|x| ∈ S} for λ > 0, S ⊂ {x : |x| = 1},
or rectangles, balls, etc.
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A set Vtx,S in the convergence determining class.
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Polar coordinates

X is regularly varying if and only if

lim
x→∞

P(X ∈ xVλ,S)

P(|X| > x)
= µ(Vλ,S)

for all µ-continuity sets Vλ,S.

This says that X is regularly varying if and only if

lim
x→∞P(|X| > λx, X/|X| ∈ S | |X| > x) = λ−α P(θ ∈ S),

for all λ > 1 and Borel sets S with P(θ ∈ ∂S) = 0, where θ is some random variable
taking values in the sphere {x : |x| = 1}.

We are free to choose any norm | · | we want. We will get the same α regardless of
the choice of norm.
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Example: elliptical distributions

Let X have a centered non-degenerate elliptical distribution. This means that X
d=

RAU , where R ≥ 0 and U are independent, U is uniformly distributed on the unit
sphere in Rn wrt the usual norm, and A is an invertible (n× n)-matrix.

Ex: if R2 is χ2(n)-distributed, then X ∼ N(0, AAT).

Take the Mahalanobis norm |z| = zTΣ−1z with Σ = AAT. Then

P(|X| > λx, X/|X| ∈ S | |X| > x) = P(R > λx | R > x)P(AU ∈ S)

so X is regularly varying if and only if R is regularly varying.

X is regularly varying if and only this holds for X + µ so there is no loss of generality
to consider centered elliptical distributions.
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Left: Scatter plot of bivariate standard Student’s t(4), Σ12 = 0.5.
Right: Densities of the spectral measure of X ∼ t(α), Σ12 = 0.5,
α = 0,2,4,8,16. Higher peaks corresponds to bigger α (i.e. lighter tails).
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Spectral measures wrt usual Euclidean norm (left) and max-norm (right).

lim
x→∞P(X/|X| ∈ S | |X| > x), |y|2 =

√
y2
1 + y2

2, |y|∞ = max(|y1|, |y2|).
{y : |y|2 = x} is a sphere of radius x, {y : |y|∞ = x} is a square with side length 2x.

Tail indices α = 0,2,4,8,16. Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.5. Larger tail
indices corresponds to higher peaks.
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Weak convergence and regular variation

The sequence {Xk} converges is distribution to X∞, Xk
d→ X∞, if

lim
k→∞

P(Xk ∈ A) = P(X∞ ∈ A)

for all Borel sets A satisfying P(X∞ ∈ ∂A) = 0.

If the Xks take values in R, then this simply means pointwise convergence for the
distribution functions limk→∞ Fk(x) = F∞(x) for all continuity points x of F∞.

If the Xks take values in Rn, then Xk
d→ X∞ if and only if z · Xk

d→ z · X∞ for all
z ∈ Rn. This is called the Cramér-Wold device.
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Cramér-Wold device for regular variation on Rn

Suppose that for some z0 ∈ Rn

b(z) := lim
x→∞

P(z ·X > x)

P(z0 ·X > x)
exists for all z ∈ Rn.

It follows that b(λz) = λαb(z) for some α > 0 and all z.

If X has non-negative components or if α is not an integer, then X is regularly varying,

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= µ(A),

where E = {y : z0 · y > 1} and µ is determined by b(z) = µ{y : z · y > 1}.

The result need not hold when X takes values in all of Rn and α is an integer.
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Regular variation in a general setting

Not many of the properties of Rn are necessary in order to define regular variation.
The definition in Rn actually qualifies as a definition of regular variation for measures
on all sorts of natural spaces.

Let (S, d) be a complete separable metric space with 0 ∈ S such that

The map [0,∞)×S 3 (λ, x) 7→ λx ∈ S is well-defined and continuous (multiplication
by a scalar is accepted and unproblematic), and

d(0, λ1x) < d(0, λ2x) if x 6= 0 and λ1 < λ2 (multiplication with larger scalars pushes
points further away from the origin along a ray).

Let M0 be the class of Borel measures on S \ {0} whose restrictions to S \ B0,r are
finite for every r > 0.
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Definition A measure ν ∈ M0 is regularly varying if there exists a non-zero measure
µ ∈ M0 and a Borel set E ⊂ S bounded away from 0 such that

lim
x→∞

ν(xA)

ν(xE)
= µ(A)

for all Borel sets A ⊂ S bounded away from 0 with µ(∂A) = 0.

It follows that µ(λA) = λ−αµ(A) for some α > 0 and all λ > 0 and Borel sets A.

An S-valued random variable is regularly varying if its distribution is regularly varying.

Note that the definition of regular variation is essentially a weak convergence state-
ment: probability measures νx on S converges weakly to a probability measure ν∞ on
S if νx(A) → ν∞(A) for all Borel sets A ⊂ S with ν∞(∂A) = 0.
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More general classes of heavy-tailed distributions

A distribution function F , with right tail F = 1− F , is long tailed (L) if

lim
x→∞

F (x− y)

F (x)
= 1 for all y > 0,

and subexponential (S) if

lim
x→∞

Fn∗(x)
F (x)

= n for all n ≥ 2.

Regular variation (R) ⇒ subexponentiality ⇒ long tailedness.

Many of the one-dimensional properties of R hold more generally for L and S. How-
ever, L and S are one-dimensional concepts with no natural multivariate analogues.

Examples: Lognormal and heavy-tailed Weibull (F (x) = e−cxτ
, τ ∈ (0,1)) belong to

S but not R.
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A suitable space for stochastic processes

We have seen that regular variation can be defined on rather general metric spaces S.

We will now take S to be a space where many of the interesting continuous time
stochastic processes live.

Take S = D to be the space of functions from [0,1] to Rd that are right-continuous
with left limits.

The space D is equipped with the Skorohod J1-topology and we can choose a metric
d on D, generating this topology, such that (D, d) has the properties we want.

d(y, z) is small if supt |y(t)−z(f(t))| is small for some increasing (time deformation)
f with f(t) ≈ t. Example: 1[τ,1] and 1[τ+ε,1] are close if |ε| is small.
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Regular variation for stochastic processes

Suppose that X is a D-valued random variable: X = {Xt}t∈[0,1] is a stochastic
process with sample paths in D.

X is regularly varying if there exists a non-zero measure µ on D \ {0} and a Borel set
E ⊂ D bounded away from 0 such that

lim
x→∞

P(X ∈ xA)

P(X ∈ xE)
= µ(A)

for all µ-continuity Borel sets A ⊂ D bounded away from 0.

We can take E = {y : supt |yt| > 1} and in many cases even E = {y : |y1| > 1}.

It seems rather difficult to check the convergence...
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Sufficient condition for regular variation.

X is regularly varying if for any t1, . . . , tk ∈ [0,1] there exists a measure µt1,...,tk, not
all of them zero, such that

lim
x→∞

P((Xt1, . . . , Xtk) ∈ xB)

P(X ∈ xE)
= µt1,...,tk(B), B ⊂ Rk,

and the probability of wild oscillations of amplitude ≈ x within an arbitrary small time
interval is much smaller then P(X ∈ xE) as x →∞.

The analogue for weak convergence of probability measures is convergence of finite
dimensional distributions and relative compactness (or tightness).
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Lévy processes

If X is a Lévy process (stationary and independent increments), then X is regularly
varying if and only if X1 is regularly varying:

lim
x→∞

P(X1 ∈ xB)

P(|X1| > x)
= µ1(B), B ⊂ Rn

if and only if

lim
x→∞

P(X ∈ xA)

P(|X1| > x)
= µ(A), A ⊂ D.

Moreover, µ(A) = E[µ1{z : z1[U,1] ∈ A}] with U uniformly distributed on (0,1).

Note that, as expected, µ concentrates on the set of step functions with one step (a
heavy-tailed Lévy process takes extreme values by making one big jump).

Moreover, the time of the big jump is uniformly distributed on (0,1) (due to the sta-
tionary increments).
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Illustration: Let X be a Lévy process with X1 regularly varying, i.e.

lim
x→∞

P(X1 ∈ xB)

P(|X1| > x)
= µ1(B).

What can be said about the tail behavior of the random variable
∫ 1
0 Xtdt?

Let A = {y ∈ D :
∫ 1
0 ytdt > 1}. Then A is bounded away from 0, µ(∂A) = 0, and

µ(A) = µ{y = z1[u,1] : y ∈ A}
= µ{y = z1[u,1] : z(1− u) > 1}

=
∫ 1

0
µ1{z : z > 1/(1− u)}du

= µ1(1,∞)
∫ 1

0
(1− u)αdu

= µ1(1,∞)/(α + 1),

where µ1(1,∞) = limx→∞ P(X1 > x)/P(|X1| > x).
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This gives

lim
x→∞

P(
∫ 1
0 Xtdt > λx)

P(X1 > x)
= lim

x→∞
P(X ∈ λxA)

P(|X1| > λx)

P(|X1| > λx)

P(|X1| > x)

P(|X1| > x)

P(X1 > x)

=
λ−α

α + 1

which gives the asymptotic approximation

P
( ∫ 1

0
Xtdt > λx

)
≈ λ−α

α + 1
P(X1 > x).

The message here is that deriving the tail behavior of functionals of heavy-tailed Lévy
processes is surprisingly easy!
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Extremes for stochastic integral processes

Let X = {Xt}t∈[0,1] be a process of the type

Xt =
∫ t

0
VsdYs.

Here Y and V are defined on a filtered probability space (Ω, F, {Ft},P),

Y is a Lévy process (adapted, meaning that Yt is Ft-measurable, and with right-
continuous sample paths with left limits) and

V is predictable (Vt is Ft−-measurable) and has left-continuous sample paths with

right limits, and mink supt |V (k)
t | > 0 a.s.

The essential point (modulo technicalities) is that Vt and dYt are independent. How-
ever, V and Y may be strongly dependent as one may take e.g. Vt =

√
Yt−.
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Moreover, it will be assumed that Y is regularly varying (equivalent to Y1 being regu-
larly varying) and that the tails of V are lighter than those of Y .

As an example take the integrator Y to be a Compound Poisson processes with Stu-
dent’s t(4) distributed jumps and the integrand V given by Vt =

√
|Yt−|.
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Left: a simulated sample path of Y conditioned on the supremum being large,
Right: the realization of the stochastic integral process

∫ t
0 VsdYs.
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In discrete time we can write the stochastic integral
∫ t
0 VsdYs as

n∑

k=1

VkYk

where the Yks are iid and regularly varying with index α > 0, Vk and Yk are indepen-
dent for each k, and E[V α+δ

k ] < ∞. (Example: Vk =
√

Yk−1.)

We have seen that if {Vk} and {Yk} are independent, then

P
( n∑

k=1

VkYk > x

)
∼ E[V α

U ]P
( n∑

k=1

Yk > x

)
∼ E[V α

U ]P
(
max

k
Yk > x

)

as x →∞.

Since only one Yk will be large when
∑n

k=1 VkYk is large we guess that the depen-
dence between the Vks and Yks will not mess things up (need only independence
between Vk and Yk for each k).

We have no reason not to expect a similar result for
∫ t
0 VsdYs.
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The result (after quite a bit of work)

We assume that Y1 is regularly varying with index α > 0:

lim
x→∞

P(Y1 ∈ xB)

P(|Y1| > x)
= µ1(B), B ⊂ Rn.

This implies that Y is regularly varying:

lim
x→∞

P(Y ∈ xA)

P(|Y1| > x)
= E[µ1{z : z1[U,1] ∈ A}], A ⊂ D

Moreover, if the process V is lighter-tailed than Y , E[supt |Vt|α+δ] < ∞ for some
δ > 0, then also X is regularly varying

lim
x→∞

P(X ∈ xA)

P(|Y1| > x)
= E[µ1{z : zVU1[U,1] ∈ A}],

where U is uniformly distributed and independent of V .

Hence, the again the extremal behavior is described by a one-step function.

32



Example. Assume that Vt > 0 and determine the tail behavior of

sup
t∈[0,1]

Xt = sup
t∈[0,1]

∫ t

0
VsdYs.

With A = {y : supt∈[0,1] yt > 1} we find that (assuming that µ1(1,∞) > 0)

lim
x→∞

P(supt∈[0,1] Xt > x)

P(Y1 > x)
= lim

x→∞
P(X ∈ xA)

P(|Y1| > x)

P(|Y1| > x)

P(Y1 > x)

= µ(A)/µ1(1,∞)

= E[µ1{z : zVU1[U,1] ∈ A}]/µ1(1,∞)

= E[µ1{z : zVU > 1}]/µ1(1,∞)

= E[µ1(V
−1
U ,∞)]/µ1(1,∞)

= E[V α
U ]µ1(1,∞)/µ1(1,∞)

=
∫ 1

0
E[V α

t ]dt.
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Similarly

lim
x→∞

P(inft∈[0,1] Xt < −x)

P(Y1 < −x)
=

∫ 1

0
E[V α

t ]dt.

Therefore the following asymptotic approximations hold

P
(

sup
t∈[0,1]

∫ t

0
VsdYs > λx

)
∼ λ−α

∫ 1

0
E[V α

t ]dtP(Y1 > x)

and

P
(

inf
t∈[0,1]

∫ t

0
VsdYs < −λx

)
∼ λ−α

∫ 1

0
E[V α

t ]dtP(Y1 < −x)

as x →∞.
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Ruin probabilities under optimal investments

Consider an insurance company depositing a part of a its capital on a bank account
and investing the rest in risky assets with spot prices Sk

t . The evolution of the capital
is given by

Xε
t = x +

∫ t

0
π0

s Xε
s−rs−ds +

n∑

k=1

∫ t

0
πk

sXε
s−

dSk
s

Sk
s−

+ εYt,

where εYt is the aggregated premium income minus claims, ε > 0 is small, and
πt = (π0

t , . . . , πn
t ) with π0

t + · · ·+ πn
t = 1 is the investment strategy.

We will study the ruin probability P(inft∈[0,1] X
ε
t < 0) without the strong assumption

of a certain parametric model. Instead we will look for asymptotic approximations.
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Fire insurance claims Ck and the process Yt = pt−∑Nt
k=1 Ck based on these claims.
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Technical assumptions

We assume that Y is a Lévy process: adapted, right-continuous sample paths with left
limits, Y has stationary and independent increments (and is continuous in probability).

We assume that limx→∞ P(Y1 < −λx)/P(Y1 < −x) = λ−α for some α > 0 and all
λ > 0 (regular variation).

We assume that the Sk’s are positive semimartingales.

This means that Sk is adapted, right-continuous sample paths with left limits, and
that Sk ≈ martingal + process with sample paths having finite variation on finite time
intervals.

Example: Lévy processes, sub- and supermartingales, etc. There is a well-established
theory for stochastic integration with respect to semimartingales.

We assume that π is predictable (πt is Ft−-measurable) and r is adapted.
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The solution to the SDE

We may write the evolution of the capital over time as

Xε
t = x +

∫ t

0
Xε

s−dZs + εYt

where Z = Zπ is the semimartingale

Zt =
∫ t

0
π0

s rs−ds +
n∑

k=1

∫ t

0
πk

s
dSk

s

Sk
s−

.

We assume that the quadratic covariation [Sk, Y ] = 0 for all k (e.g. if Y is compound
Poisson with no jump time coinciding with those for the price processes Sk

t ). Then

Xε
t = E(Z)t

(
x + ε

∫ t

0

dYs

E(Z)s−

)
,

where E(Z) is the Doléans-Dade exponential of Z:

E(Z)t = eZt−1
2[Z,Z]ct

∏

s∈(0,t]

(1 + ∆Zs)e
−∆Zs, ∆Zs = Zs − Zs−.
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The ruin probability

If ∆Zt > −1 for all t, then E(Z)t > 0 and the ruin probability can be written

P
(

inf
t∈[0,1]

Xε
t < 0

)
= P

(
inf

t∈[0,1]
E(Z)t

{
x+ε

∫ t

0

dYs

E(Z)s−

}
< 0

)

= P
(

inf
t∈[0,1]

∫ t

0

dYs

E(Z)s−
< −x

ε

)
.

Note: letting ε → 0 or x →∞ gives the same asymptotic analysis.

Note: ∆St = St − St− > −St− so ∆Zt =
∑n

k=1 πk
t ∆St/St− > −∑n

k=1 πk
t = −1

if πk
t ≥ 0.

We see that ruin occurs due to a combination of bad investments (E(Z)t close to zero)
and either a lot of average size claims (the case of a light-tailed claim size distribution)
or a few very large claims (the case of a heavy-tailed claim size distribution).
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Asymptotic approximation of the ruin probability

Assume that the probability that only bad investments reduces the capital to almost
zero is sufficiently small (OK for all Lévy processes Z with jumps which are greater
than −1):

E sup
t∈[0,1]

E(Z)−α−δ
t < ∞ for some δ > 0.

Then (as we have already seen) it holds that

P
(

inf
t∈[0,1]

Xε
t < 0

)
∼ P

( ∫ t

0

dYs

E(Z)s−
< −x

ε

)

∼ x−α
∫ 1

0
EE(Z)−α

t dtP(Y1 < −1/ε)

as ε → 0.

The integral often rather easy to compute (e.g. when Z is a Lévy process).
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Optimal investment strategies

Let’s now look at optimal investment strategies (optimal in the sense of minimizing the
ruin probability). This means that for the integrator

Zπ
t =

∫ t

0
π0

s rs−ds +
n∑

k=1

∫ t

0
πk

s
dSk

s

Sk
s−

we choose πt = πt(ε) at time t− optimally given ε, information on the current reserve,
prices, claim amounts, etc.

Let Π be a family of investment strategies such that it holds that inft∈[0,1] ∆Zπ
t > −1

for all π ∈ Π and

sup
π∈Π

E sup
t∈[0,1]

E(Zπ)−α−δ
t < ∞ for some δ > 0.

This means that only bad investments do not lead to ruin and that it is sufficiently
unlikely that only bad investments lead to almost ruin.
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Robust asymptotics

Then it holds that

lim
ε→0

sup
π∈Π

∣∣∣∣
P(inft∈[0,1] X

ε,π
t < 0)

P(Y1 < −1/ε)
− x−α

∫ 1

0
EE(Zπ)−α

t dt

∣∣∣∣ = 0

and in particular that

lim
ε→0

inf
π∈Π

P(inft∈[0,1] X
ε,π
t < 0)

P(Y1 < −1/ε)
= inf

π∈Π
lim
ε→0

P(inft∈[0,1] X
ε,π
t < 0)

P(Y1 < −1/ε)

= inf
π∈Π

x−α
∫ 1

0
EE(Zπ)−α

t dt.
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Asymptotic approximation under optimal investments

This gives the asymptotic approximation for the ruin probability under the optimal in-
vestment strategy π̂(ε),

P
(

inf
t∈[0,1]

X
ε,π̂(ε)
t < 0

)
= inf

π∈Π
P

(
inf

t∈[0,1]
X

ε,π
t < 0

)
.

We have

P
(

inf
t∈[0,1]

X
ε,π̂(ε)
t < 0

)
∼ x−α inf

π

∫ 1

0
EE(Zπ)−α

t dtP(Y1 < −1/ε)

as ε → 0.

Note that the right-hand side is a lot simpler to evaluate than the essentially impossible
left-hand side.
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Thanks for your attention!

If you haven’t had enough of this, more details can be found in:

Boman, Lindskog (2009) Support theorems for the Radon transform and Cramér-Wold
theorems, J. Theoret. Probab. 22, 683-710.

Hult, Lindskog (2006) Regular variation for measures on metric spaces, Publ. Inst.
Math. (Beograd) (N.S.) 80, 121-140.

Hult, Lindskog (2007) Extremal behavior of stochastic integrals driven by regularly
varying Lévy processes, Ann. Probab. 35, 309-339.

Hult, Lindskog (2010) Ruin probabilities under general investments and heavy-tailed
claims, Finance Stoch., accepted for publication.
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