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Overview of research

◮ Pricing and hedging of mortality-linked cash flows
◮ Derivatives (e.g. forwards, bonds and swaps) linked to the

mortality of a certain population
◮ Insurance portfolios, pension fund management

in incomplete markets

◮ Stochastic modelling of risk factors
◮ Mortality
◮ Liabilities
◮ Assets

◮ Numerical techniques
◮ Integration quadratures
◮ Numerical optimization
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Mortality-linked instruments

The value of liabilities depends essentially on

◮ Probability distribution: description of future development
of claims and investment returns, both involving significant
uncertainties

◮ Risk preferences: the level of risk at which assets should
cover liabilities

◮ Hedging strategy: investment strategy for the given capital
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Mortality-linked instruments

◮ Denote by Sx ,t ∈ [0, 1] the proportion of survivors in cohort
x ∈ X ⊂ N at times t = 0, 1, . . . ,T (Survivor index)

◮ (Annuity) survivor bond: coupon payments proportional to
Sx ,t at times t = 0, 1, . . . ,T in exchange for an initial
payment V0

◮ Survivor forward: exchange of an amount of Sx ,T for a fixed
payment F at the moment T

◮ Survivor swap: exchange of a cash flow proportional to St for
a fixed cash flow S̄t at times t = 0, 1, . . . ,T

◮ Pension fund management: insurance claims ct that depend
on St = Sx ,t as well as consumer price and pension indices

◮ Other examples and variants (e.g. zero-coupon bond with
terminal payment Sx ,T )
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Mortality-linked instruments

The following market model is used for the pricing:

◮ A finite set J of liquid assets (e.g. bonds, equities, . . .), cash
account indexed by j = 0

◮ Return of asset j over period [t − 1, t] is denoted by Rt,j ,

◮ The amount of wealth invested in asset j at time is t ht,j

◮ St = (Sx ,t)x∈X , Rt = (Rt,j)j∈J and ht = (ht,j)j∈J are the
vectors of survivor indices, returns and investments,
respectively

◮ (St)
T
t=0, (Rt)

T
t=0, (ht)

T
t=0 are adapted stochastic processes on

a filtered probability space (Ω,F , (F)Tt=1,P)

◮ P reflects the investor’s views on the future development of
the stochastic factors

Helena Aro Pricing and hedging of mortality-linked securities



Mortality-linked instruments

The pricing problem for the issuer of a survivor bond can be
formulated as

minimize
∑

j∈J

h0,j over h ∈ N

subject to
∑

j∈J

ht,j =
∑

j∈J

Rt,jht−1,j − Sx+t,t t = 1, . . . ,T

ht,j ∈ Dt , t = 1, . . . ,T
∑

j∈J

hT ,j ∈ A.

◮ N denotes the R
J -valued investment strategies, adapted to

the filtration (F)Tt=1
◮ Dt(ω) ∈ R

J is the set of feasible investment strategies at time
t and state ω

◮ A ⊂ L0(Ω,FT ,P) is an acceptance set that quantifies the
decision maker’s preferences about the terminal wealth
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Mortality-linked instruments

◮ Acceptance set A = {X ∈ L0 | X ≥ 0 P− a.s.} corresponds
to superhedging

◮ A = {X ∈ L0 | P(X ≥ 0) ≥ δ} corresponds to quantile
hedging

◮ A = {X ∈ L0 | Eu(X ) ≥ u(0)} , where u is a utility function,
corresponds to efficient hedging in the sense of Föllmer and
Leukert

◮ A = {X ∈ L0 | ρ(X ) ≤ 0)} , where ρ is a convex risk
measure, corresponds to risk measure pricing

In general, analytical solutions to the pricing problem are not
available. For some A numerical solutions can be sought, e.g. with
integration quadratures and stochastic optimization methods.
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Mortality-linked instruments

The pricing problem for the issuer of a survivor forward can be
formulated as

minimize F

subject to
∑

j∈J

ht,j =
∑

j∈J

Rt,jht−1,j

∑

j∈J

h0,j = 0

ht,j ∈ Dt , t = 1, . . . ,T
∑

j∈J

hT ,j + F − ST ∈ A.
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Mortality-linked instruments

Pricing problem for the issuer of a survivor swap can be formulated
as

minimize α

subject to
∑

j∈J

ht,j =
∑

j∈J

Rt,jht−1,j + αS̄t − St t = 1, . . . ,T

h0,j = 0

ht,j ∈ Dt , t = 1, . . . ,T
∑

j∈J

hT ,j ∈ A.

◮ Finding the minimum acceptable rate, when fixed cash flows
are a proportion of a forecast survival rate S̄t

Helena Aro Pricing and hedging of mortality-linked securities



Mortality-linked instruments

◮ The problem of determining the minimum initial capital
required for acceptable hedging of pension liabilities can be
formulated as

minimize
∑

j∈J

h0,j over h ∈ N

subject to
∑

j∈J

ht,j =
∑

j∈J

Rt,jht−1,j − ct t = 1, . . . ,T

ht,j ∈ Dt , t = 1, . . . ,T
∑

j∈J

hT ,j ∈ A

◮ The claims ct depend on (Sx ,t)x∈X as well as the consumer
price index
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Stochastic modelling

◮ Modelling (the investor’s view of) the probability distribution
P

◮ Population dynamics (St)
T
t=1

◮ Asset returns (Rt)
T
t=1

◮ Other relevant information (inflation, GDP,...)
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The mortality model

◮ Population dynamics described by a mortality model

◮ Several existing stochastic models for mortality (e.g.
Lee&Carter, 1992)

◮ We propose a general discrete-time framework
◮ Flexible but relatively simple
◮ Incorporates population-specific characteristics and user

preferences
◮ Robust in calibration
◮ Allows for a choice of easily interpretable risk factors
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The mortality model

◮ Let E (x , t) be the size of population aged [x , x + 1) (cohort)
at the beginning of year t

◮ Objective: model the values of E (x , t) over time
t = 0, 1, 2, . . . for a given set X ⊂ N of ages

◮ Assume the conditional distribution of E (x+1, t+1) given
E (x , t) is binomial:

E (x+1, t+1) ∼ Bin(E (x , t), p(x , t))

where p(x , t) is the probability that an individual aged x and
alive at the beginning of year t is still alive at the end of that
year
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The mortality model

◮ We reduce the dimensionality of p(., t) by modelling the
logistic probabilities by

logit p(x , t) := ln
( p(x , t)

1− p(x , t)

)

=

n
∑

i=1

vi(t)φi (x),

where φi (x) are user-defined basis functions across cohorts,
and vi(t) stochastic risk factors that vary over time

◮ In other words, p(x , t) = pv(t)(x), where
v(t) = (v1(t), . . . , vn(t)), and pv : X → (0, 1) is the
parametric function defined for each v ∈ R

n by

pv (x) =
exp (

∑n
i=1 viφi (x))

1 + exp(
∑n

i=1 viφi (x))

◮ Modelling the logit transforms instead of p(x , t) directly
guarantees that p(x , t) ∈ (0, 1).
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The mortality model

◮ Vector v(t) of risk factors is modelled as a stochastic process,
based on historical values, expert opinions, or both

◮ Historical values of v(t) are constructed by maximum
likelihood estimation, maximization problem is concave with
very mild assumptions

◮ Selection of basis functions determines characteristics of the
model

◮ Certain desired properties of p(x , t), e.g. continuity or
smoothness across cohorts, are achieved by corresponding
choices of φi (x)

◮ Incorporation of user preferences and/or population-specific
characteristics

◮ Appropriate choice of basis functions assigns interpretations to
risk factors

◮ Concrete interpretations facilitate the modelling of risk
factors, which is advantageous the engineering of
mortality-linked instruments
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Example: Modelling Finnish mortality

◮ We consider the mortality of Finnish males aged 18-100 years

◮ Data consists of annual values of E (x , t), covering years
1900-2007 1

◮ A model with three parameters and three piecewise linear
basis functions is fitted into the data

◮ We present simulations for future population dynamics and a
simple survival bond hedging example

1Source: Human mortality database, www.mortality.org
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Example: Modelling Finnish mortality

◮ The model:

logit p(x , t) = v1(t)φ1(x) + v2(t)φ2(x) + v3(t)φ3(x),

where basis functions are piecewise linear:

φ1(x) =

{

1− x−18
32

for x ≤ 50

0 for x ≥ 50,
φ2(x) =

{

1
32
(x − 18) for x ≤ 50

2− x

50
for x ≥ 50,

φ3(x) =

{

0 for x ≤ 50
x

50
− 1 for x ≥ 50.

◮ The linear combination now also piecewise linear:
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◮ Values of vi(t) points on the logit p(x , t) curve: a natural
interpretation
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Example: Modelling Finnish mortality
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Figure: Estimated parameter values (logit survival probabilities for 18-,
50- and 100-year-olds).
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Example: Modelling Finnish mortality

0

20

40

60

80

100 1900

1950

2000

2050
0

0.2

0.4

0.6

0.8

1

E(x+1,t+1)/E(x,t), male

0

20

40

60

80

100 1900
1920

1940
1960

1980
2000

20200

0.2

0.4

0.6

0.8

1

p(x,t), male

Figure: Estimated values of p(x , t) vs. E(x+1,t+1)
E(x,t) for three-factor model
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Example: Modelling Finnish mortality

◮ The vector of risk factors v(t) is modelled as a stochastic
process

◮ Three-dimensional random walk with a drift is fitted into the
estimated values of v(t) for the years 1960-2007 (an even
drift)

◮ Survival probabilities p(x , t) and cohort sizes E (x , t) for
Finnish males were simulated for 30 years into the future by
simulating the process v with the Monte Carlo method
(sample size 10000)

◮ Population size E (x+1, t+1) in each cohort was
approximated by its expected value E (x , t)p(x , t)
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Example: Modelling Finnish mortality
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Figure: Medians and 90% confidence intervals for living probabilities
p(., t) and cohort sizes E (., t). Cohort aged 30 in 2007.
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Example: Modelling Finnish mortality
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Figure: Medians and 90% confidence intervals for living probabilities
p(., t) and cohort sizes E (., t). Cohort aged 65 in 2007.
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Asset returns

◮ Modelling relevant asset returns

◮ Pension insurance liabilities typically hedged with bonds and
equities

◮ Dependencies between assets and liabilities are essential in
construction of hedging strategies

◮ Bonds, inflation-linked securities, equities in pharmaceutical or
healthcare sectors,...
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Numerical methods for the hedging problem

◮ Generally, analytical solutions are not available

◮ Numerical methods are needed to solve the optimization
problem

◮ The infinite-dimensional space of feasible investment strategies
can be approximated by a finite-dimensional subspace spanned
by a finite set of basis strategies (Galerkin method)

◮ Linear combinations of basis strategies can be optimized using
integration quadratures and numerical optimization techniques
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Example: survivor bond

◮ We consider a survivor bond with coupons St and no terminal
payment

◮ St is now the survival index of 65-year-old Finnish males, and
T = 30 years

◮ Mortality model risk factors v(t) modelled as a random walk
with a drift as before

◮ We consider only one asset and model its returns as

lnRt = µ+ σǫt ,

where µ = σ = 0.06 (mean and standard deviation of annual
returns are approx. 6% )

◮ Acceptance set is defined by means of risk measure CV@R
with risk level 85% (risk measure pricing)

◮ Monte Carlo method with 10000 simulations is employed to
obtain the CV@R value of the terminal wealth for a given
initial capital

◮ Minimum initial capital computed with a simple line search
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Example: survivor bond
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Figure: Evolution of the 10%, 50%, and 90% quantiles of the seller’s
total capital Vt when initial capital V0 = 25.9e corresponds to CV@R85%
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