On asymptotic behaviour of the increments of sums of i.i.d. random variables from domains of attraction of asymmetric stable laws.

Terterov M., St-Petersburg State University

March, 2010

Let X, X_1, X_2, \ldots be a sequence of independent identically distributed (i.i.d.) random variables. Put $S_n = X_1 + \ldots + X_n$, $S_0 = 0$.

Let a_n be a nondecreasing sequence of natural numbers. We will study the asymptotic behaviour of the increments of sums

$$T_n = S_{n+ca_n} - S_n$$

as well as the maximal increments

$$U_n = \max_{0 \le k \le n - a_n} (S_{k+a_n} - S_k).$$

The aim is to describe a normalizing sequence c_n such that

$$\limsup \frac{T_n}{c_n} = 1 \quad a.s.$$

$$\limsup \frac{U_n}{c_n} = 1 \quad a.s.$$

2 / 17

L. Shepp (1964) $T_n = \frac{S_{n+a_n} - S_n}{a_n}$, $a_n \nearrow \infty$, a_n takes positive integer values. $M_t = \mathbf{E}e^{Xt} < \infty$. $T = \limsup T_n$ was determined in terms of the moment generating function of X and the radius of convergence of $\sum x^{a_n}$ (denoted r). $m(a) = \min M(t)e^{-at}$. T = a a.s., where a = a(r) is the unique solution of m(a) = r. P. Erdős, A. Rényi (1970) $a_n = [c \log n]$. Theorem 1. Suppose that the moment generating function $M_t = \mathbf{E}e^{Xt}$ exists for $t \in I$, where I is an open interval containing t = 0. Let us suppose that $\mathbf{E}X = 0$. Let α be any positive number such that the function $M(t)e^{-\alpha t}$ takes on its minimum in some point in the open interval I and let us put

$$\min_{t \in I} M(t)e^{-\alpha t} = M(\tau)e^{-\alpha \tau} = e^{-1/c}.$$

Then

$$\mathbf{P}(\lim \max_{0 \le k \le n - [c \log n]} \frac{S_{k+[c \log n]} - S_k}{[c \log n]} = \alpha) = 1$$

Theorem 2. The functional dependence between α and $c = c(\alpha)$ determines the distribution of the random variables X_n uniquely.

Practical implements.

1. The longest runs of pure heads.

Theorem 3(special case of Theorem 1). Let $X_1, X_2, ...$ be independent Bernoulli random variables with

 $\mathbf{P}(X_i = 1) = 0.5 = \mathbf{P}(X_i = -1), S_n = X_1 + \ldots + X_n$. Then for any $c \in (0, 1)$ there exists $n_0 = n_0(c)$ such that

$$\max_{0 \le k \le [c \log_2 n]} (S_{k+[c \log_2 n]} - S_k) = [c \log_2 n] \quad a.s.$$

if $n > n_0$.

This theorem guarantees the existence of a run of length $[c \log_2 n]$ when n is large enough.

2. The stochastic geyser problem. X_1, X_2, \dots - i.i.d.r.v., F(.) is their distribution function. Put $V_n = S_n + R_n$, where R_n is also a r.v. sequence.

Theorem (Bártfai, 1966). Assume that the moment generating function of X_1 exists in a neibourhood of t = 0 and $R_n = o(\log n)$. Then, given the values of $\{V_n; n = 1, 2...\}$, the distribution function F(.) is determined with probability 1, i.e. there exists a r. v. $L(x) = L(V_1, V_2, ..., x)$, measurable with a respect of σ -algebra, generated by $V_1, V_2...$ such that for any given real x, L(x) = F(x). Proof. For any c > 0 we have

$$\lim \max_{\substack{0 \le k \le n - [c \log n]}} \frac{V_{k+[c \log n]} - V_k}{[c \log n]} =$$
$$\lim \max_{\substack{0 \le k \le n - [c \log n]}} \frac{S_{k+[c \log n]} - S_k}{[c \log n]} = \alpha(c) \quad a.s.$$

Improvements.

J. Steinebach (1978).

The existence of a moment generating function is a necessary condition. If $M(t) = \mathbf{E}e^{Xt} = \infty$ for all t > 0, then

$$\limsup \max_{0 \le k \le n - [c \log n]} \frac{S_{k+[c \log n]} - S_k}{[c \log n]} = \infty \quad a.s.$$

D. Mason.(1989) (The extended version of Erdős-Rényi laws).

$$\max_{0 \le k \le n - a_n} \frac{S_{k+a_n} - S_k}{\gamma(c)a_n} \stackrel{a.s.}{\to} 1,$$

where $\gamma(c)$ is a constant depending on c and M(t) remains true when $a_n/\log n \to 0$. (Erdős and Rényi had $a_n/\log n \sim c$). M. Csörgő and J. Steinebach (1981). Theorem. Suppose $\mathbf{E}X = 0$, $\mathbf{E}X^2 = 1$ and there exists a $t_0 > 0$ such that $M(t) = \mathbf{E}e^{Xt} < \infty$ if $|t| < t_0$. Then for the sums S_n the following holds

$$\lim_{n \to \infty} \max_{0 \le k \le n - a_n} \frac{S_{k+a_n} - S_k}{(2a_n \log(n/a_n))^{1/2}} = 1 \quad a.s.,$$

where $\frac{a_n}{(\log n)^2} \to \infty$. In this case the normalizing sequence depends only on the moment conditions on X.

$$T_n = S_{n+ca_n} - S_n$$
$$U_n = \max_{0 \le k \le n-a_n} (S_{k+a_n} - S_k), \quad \limsup \frac{U_n}{c_n} = 1 \quad a.s.$$

The asymptotic behahior of U_n and T_n strongly depends on the rate of the growth of a_n and the moment conditions on X. If $a_n = O(\log n)$, the normalizing sequence c_n depends on the distribution of X (Erdős-Rényi laws). If $a_n/\log n \to \infty$ and $\mathbf{E}X = 0$, $\mathbf{E}X^2 = 1$, the normalising sequence does not depend on the distribution of X and is the same as the one for the Gaussian distribution. In this case $c_n = \sqrt{2a_n(\log(n/a_n) + \log \log n)}$ (Csörgő-Révész laws). For example: put $a_n = n$, $c_n = (2n \log \log n)^{1/2}$, $U_n = S_n$,

$$\limsup \frac{S_n}{\sqrt{2n\log\log n}} = 1 \quad a.s.$$

Frolov (2000).

It turned out, that these two types of behaviour are particular cases of the universal one. For variables with a finite moment generating function there exists an explicit formula for the normalizing sequence c_n . H. Lanzinger, U. Stadtmuller.

Let X, X_1, X_2, \ldots be a sequence of i.i.d. random variables. Suppose $\mathbf{E}X = 0$, $\mathbf{E}X^2 = \sigma^2$. $\mathbf{E}e^{t|X|^{1/p}} < \infty$ for all t in a neibourhood of 0.

$$t_0 = \sup\{t \ge 0 : \mathbf{E}e^{g(tX)} < \infty\} \in (0,\infty)$$

$$\varphi(c) = \max\{x + y : \frac{x^2}{2c\sigma^2} + (t_0 y)^{\frac{1}{p}} \le 1, x \ge 0, y \ge 0\}.$$

Theorem.

Under assumptions made above, we have

$$\lim_{n \to \infty} \max_{0 \le j < n} \max_{1 \le k \le n-j} \frac{S_{j+k} - S_j}{\varphi(\frac{k}{(\log n)^{2p-1}})(\log n)^p} = 1 \quad \text{a.s.}$$

Corollary

$$\limsup_{n \to \infty} \max_{0 \le j < n} \frac{S_{j+c(\log n)^{2p-1}} - S_j}{\varphi(c)(\log n)^p} = 1 \quad \text{a.s.}$$

H. Lanzinger (2000). Theorem.

$$\limsup_{n \to \infty} \frac{S_{n+(\log n)^p} - S_n}{(\log n)^{(p+1)/2}} = \varphi(1) \quad \text{a.s.}$$

Definition. Suppose that X has a distribution R. The distribution R is stable if for every n there exist $c_n > 0$ and γ_n such that $S_n = c_n X + \gamma_n$. $c_n = n^{1/\alpha}c$, $0 < \alpha \leq 2$. Normal distribution is stable with $\alpha = 2$ and $\gamma_n = 0$. The distribution function G belongs to the domain of attraction of R if there exist a sequence B_n , $B_n > 0$ and A_n , such that

$$\frac{S_n - A_n}{B_n} \xrightarrow{d} R.$$

There exists a canonical representation of the characteristic function of a stable law.

$$f(t) = \exp(it\gamma - c|t|^{\alpha}(1 - i\frac{t}{|t|}\beta\omega(t,\alpha))),$$

where $\gamma \in R$, $c \ge 0$, $|\beta| \le 1$, $\omega(t, \alpha) = \tan \pi \alpha/2$ if $\alpha \ne 1$ and $\omega(t, \alpha) = (2/\pi) \log t$, if $\alpha = 1$.

Let X, X_1, X_2, \ldots be a sequence of i.i.d. random variables, $\mathbf{E}X = 0, F(x) = \mathbf{P}(X < x)$. Suppose F(x) to be from a domain of attraction of a stable law with index $\alpha \in (1, 2)$ and the characteristic function $\psi(t) = \exp\{-a|t|^{\alpha}(1+i\frac{t}{|t|}\tan\frac{\pi}{2}\alpha)\},\$ $a = \cos(\pi(2-\alpha)/2)$. Let $B_n = n^{\frac{1}{\alpha}}$. Define, further $c_n = (\log n)^{\frac{p+\alpha-1}{\alpha}}, \quad t_0 = \sup\{t \ge 0 : \mathbf{E}e^{t(X^+)\frac{\alpha}{p+\alpha-1}} < \infty\},\$ $\varphi(c) = \max\{x+y: \frac{(\alpha-1)x^{\frac{\alpha}{\alpha-1}}}{\alpha c^{\frac{1}{\alpha-1}}} + t_0y^{\frac{\alpha}{p+\alpha-1}} \le 1, x \ge 0, y \ge 0\}.$

Theorem. Suppose $t_0 \in (0, \infty)$ Then $S_{n+can} - S_{n+can}$

$$\limsup_{n \to \infty} \frac{S_{n+ca_n} - S_n}{c_n \varphi(c)} = 1 \quad \text{a.s.}$$

References.

- Csörgő M., Steinebach J., Improved Erdos-Renyi and strong approximation laws for increments of partial sums, Ann. Probab. v. 9, 1981, 988-996.
- Erdős P., Rényi A., On a new law of large numbers, J.
 Analyse Math., v. 23, 1970, 103-111.
- Frolov A. N., One-sided strong laws for increments of sums of i.i.d. random variables, Studia Scientiarum Mathematicarum Hungarica v. 39, 2002, 333-359.
- Lanzinger H., A law of the single logarithm for moving averages of random variebles under exponential moment condition, Studia Scientiarum Mathematicarum Hungarica, v. 36, 2000, 65-91.

- Lanzinger H., Stadtmuller U., Maxima of increments of partial sums for certain subexponential distributions,
 Stochastic Processes and their Applications, v. 86, 2000, 307-322.
- D. Mason, An Extended Version of the Erdos-Renyi Strong Law of Large Numbers, The Ann. Probab., Vol. 17, No. 1 (Jan., 1989), pp. 257-265.
- Shepp L. A., A limit law concerning moving averages, Ann. Math. Statist., v. 35, 1964, 424-428.
- J. Steinebach, On a Necessary Condition for the Erdős-Rényi Law of Large Numbers, Proceedings of the AMS, Vol. 68, No. 1 (Jan., 1978), pp. 97-100.