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Let X,X1, X2, . . . be a sequence of independent identically
distributed (i.i.d.) random variables. Put Sn = X1 + . . .+Xn,
S0 = 0.
Let an be a nondecreasing sequence of natural numbers.
We will study the asymptotic behaviour of the increments of
sums

Tn = Sn+can − Sn

as well as the maximal increments

Un = max
0≤k≤n−an

(Sk+an − Sk).

The aim is to describe a normalizing sequence cn such that

lim sup
Tn

cn
= 1 a.s.

lim sup
Un

cn
= 1 a.s.
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L. Shepp (1964) Tn = Sn+an−Sn

an
, an ր ∞, an takes positive

integer values. Mt = EeXt <∞. T = lim supTn was determined
in terms of the moment generating function of X and the radius
of convergence of

∑

xan (denoted r).
m(a) = minM(t)e−at.
T = a a.s., where a = a(r) is the unique solution of m(a) = r.
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P. Erdős, A. Rényi (1970) an = [c log n]. Theorem 1. Suppose
that the moment generating function Mt = EeXt exists for
t ∈ I, where I is an open interval containing t = 0. Let us
suppose that EX = 0. Let α be any positive number such that
the function M(t)e−αt takes on its minimum in some point in
the open interval I and let us put

min
t∈I

M(t)e−αt = M(τ)e−ατ = e−1/c.

Then

P(lim max
0≤k≤n−[c log n]

Sk+[c log n] − Sk

[c log n]
= α) = 1
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Theorem 2. The functional dependence between α and c = c(α)
determines the distribution of the random variables Xn

uniquely.
Practical implements.
1. The longest runs of pure heads.
Theorem 3(special case of Theorem 1). Let X1, X2, ... be
independent Bernoulli random variables with
P(Xi = 1) = 0.5 = P(Xi = −1), Sn = X1 + . . .+Xn. Then for
any c ∈ (0, 1) there exists n0 = n0(c) such that

max
0≤k≤[c log2 n]

(Sk+[c log2 n] − Sk) = [c log2 n] a.s.

if n > n0.
This theorem guarantees the existence of a run of length
[c log2 n] when n is large enough.
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2. The stochastic geyser problem. X1, X2, ... - i.i.d.r.v., F (.) is
their distribution function. Put Vn = Sn +Rn, where Rn is also
a r.v. sequence.
Theorem (Bártfai, 1966). Assume that the moment generating
function of X1 exists in a neibourhood of t = 0 and
Rn = o(log n). Then, given the values of {Vn;n = 1, 2...}, the
distribution function F (.) is determined with probability 1, i.e.
there exists a r. v. L(x) = L(V1, V2, ..., x), measurable with a
respect of σ-algebra, generated by V1, V2... such that for any
given real x, L(x) = F (x).
Proof. For any c > 0 we have

lim max
0≤k≤n−[c log n]

Vk+[c log n] − Vk

[c log n]
=

lim max
0≤k≤n−[c log n]

Sk+[c log n] − Sk

[c log n]
= α(c) a.s.
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Improvements.

J. Steinebach (1978).
The existence of a moment generating function is a necessary
condition. If M(t) = EeXt = ∞ for all t > 0, then

lim sup max
0≤k≤n−[c log n]

Sk+[c log n] − Sk

[c log n]
= ∞ a.s.

D. Mason.(1989) (The extended version of Erdős-Rényi laws).

max
0≤k≤n−an

Sk+an − Sk

γ(c)an

a.s.→ 1,

where γ(c) is a constant depending on c and M(t) remains true
when an/ log n→ 0. (Erdős and Rényi had an/ log n ∼ c).
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M. Csörgő and J. Steinebach (1981). Theorem. Suppose
EX = 0, EX2 = 1 and there exists a t0 > 0 such that
M(t) = EeXt <∞ if |t| < t0. Then for the sums Sn the
following holds

lim
n→∞

max
0≤k≤n−an

Sk+an − Sk

(2an log(n/an))1/2
= 1 a.s.,

where an
(log n)2

→ ∞.

In this case the normalizing sequence depends only on the
moment conditions on X.
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Tn = Sn+can − Sn

Un = max
0≤k≤n−an

(Sk+an − Sk), lim sup
Un

cn
= 1 a.s.

The asymptotic behahior of Un and Tn strongly depends on the
rate of the growth of an and the moment conditions on X.
If an = O(log n), the normalizing sequence cn depends on the
distribution of X (Erdős-Rényi laws).
If an/ log n→ ∞ and EX = 0, EX2 = 1, the normalising
sequence does not depend on the distribution of X and is the
same as the one for the Gaussian distribution. In this case
cn =

√

2an(log(n/an) + log logn) (Csörgő-Révész laws).
For example: put an = n, cn = (2n log log n)1/2, Un = Sn,

lim sup
Sn√

2n log log n
= 1 a.s.
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Frolov (2000).
It turned out, that these two types of behaviour are particular
cases of the universal one. For variables with a finite moment
generating function there exists an explicit formula for the
normalizing sequence cn.
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H. Lanzinger, U. Stadtmuller.
Let X,X1, X2, . . . be a sequence of i.i.d. random variables.
Suppose EX = 0, EX2 = σ2. Eet|X|1/p

<∞ for all t in a
neibourhood of 0.

t0 = sup{t ≥ 0 : Eeg(tX) <∞} ∈ (0,∞)

ϕ(c) = max{x+ y :
x2

2cσ2
+ (t0y)

1

p ≤ 1, x ≥ 0, y ≥ 0}.

Theorem.
Under assumptions made above, we have

lim
n→∞

max
0≤j<n

max
1≤k≤n−j

Sj+k − Sj

ϕ( k
(log n)2p−1 )(log n)p

= 1 a.s.
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Corollary

lim sup
n→∞

max
0≤j<n

Sj+c(log n)2p−1 − Sj

ϕ(c)(logn)p
= 1 a.s.

H. Lanzinger (2000).
Theorem.

lim sup
n→∞

Sn+(log n)p − Sn

(log n)(p+1)/2
= ϕ(1) a.s.
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Definition. Suppose that X has a distribution R. The
distribution R is stable if for every n there exist cn > 0 and γn

such that Sn = cnX + γn. cn = n1/αc, 0 < α ≤ 2.
Normal distribution is stable with α = 2 and γn = 0.
The distribution function G belongs to the domain of attraction
of R if there exist a sequence Bn, Bn > 0 and An, such that

Sn −An

Bn

d→ R.
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There exists a canonical representation of the characteristic
function of a stable law.

f(t) = exp(itγ − c|t|α(1 − i
t

|t|βω(t, α))),

where γ ∈ R, c ≥ 0, |β| ≤ 1, ω(t, α) = tanπα/2 if α 6= 1 and
ω(t, α) = (2/π) log t, if α = 1.
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Let X,X1, X2, . . . be a sequence of i.i.d. random variables,
EX = 0, F (x) = P(X < x). Suppose F (x) to be from a domain
of attraction of a stable law with index α ∈ (1, 2) and the
characteristic function ψ(t) = exp{−a|t|α(1 + i t

|t| tan π
2α)},

a = cos(π(2 − α)/2). Let Bn = n
1

α .
Define, further

cn = (log n)
p+α−1

α , t0 = sup{t ≥ 0 : Eet(X
+)

α
p+α−1

<∞},

ϕ(c) = max{x+ y :
(α− 1)x

α
α−1

αc
1

α−1

+ t0y
α

p+α−1 ≤ 1, x ≥ 0, y ≥ 0}.

Theorem. Suppose t0 ∈ (0,∞)
Then

lim sup
n→∞

Sn+can − Sn

cnϕ(c)
= 1 a.s.
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