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Conditional Expectation

If F is a sigma-algebra and X is a random variable
which is F-measurable, we write this as X ∈ F .

If X ∈ F and if G ⊆ F then we write E [X| G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation EG [X].

The following proposition contains everything that we
will need to know about conditional expectations within
this course.
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Main Results

Proposition 1: Assume that X ∈ F, and that G ⊆ F .
Then the following hold.

• The random variable E [X| G] is completely determined by

the information in G so we have

E [X| G] ∈ G

• If we have Y ∈ G then Y is completely determined by G so

we have

E [XY | G] = Y E [X| G]

In particular we have

E [Y | G] = Y

• If H ⊆ G then we have the “law of iterated expectations”

E [E [X| G]|H] = E [X|H]

• In particular we have

E [X] = E [E [X| G]]
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Absolute Continuity

Definition: Given two probability measures P and Q
on F we say that Q is absolutely continuous w.r.t.
P on F if, for all A ∈ F , we have

P (A) = 0 ⇒ Q(A) = 0

We write this as
Q << P.

If Q << P and P << Q then we say that P and Q
are equivalent and write

Q ∼ P

Tomas Björk, 2010 8



Equivalent measures

It is easy to see that P and Q are equivalent if and
only if

P (A) = 0 ⇔ Q(A) = 0

or, equivalently,

P (A) = 1 ⇔ Q(A) = 1

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

• All non degenerate Gaussian distributions on R are
equivalent.

• If P is Gaussian on R and Q is exponential then
Q << P but not the other way around.
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Absolute Continuity ct’d

Consider a given probability measure P and a random
variable L ≥ 0 with EP [L] = 1. Now define Q by

Q(A) =
∫

A

LdP

then it is easy to see that Q is a probability measure
and that Q << P .

A natural question is now if all measures Q << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows.
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The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,F),
and assume that Q << P on F . Then there exists a
unique random variable L with the following properties

1. Q(A) =
∫

A
LdP, ∀A ∈ F

2. L ≥ 0, P − a.s.

3. EP [L] = 1,

4. L ∈ F

The random variable L is denoted as

L =
dQ

dP
, on F

and it is called the Radon-Nikodym derivative of Q
w.r.t. P on F , or the likelihood ratio between Q and
P on F .
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A simple example

The Radon-Nikodym derivative L is intuitively the local
scale factor between P and Q. If the sample space Ω
is finite so Ω = {ω1, . . . , ωn} then P is determined by
the probabilities p1, . . . , pn where

pi = P (ωi) i = 1, . . . , n

Now consider a measure Q with probabilities

qi = Q(ωi) i = 1, . . . , n

If Q << P this simply says that

pi = 0 ⇒ qi = 0

and it is easy to see that the Radon-Nikodym derivative
L = dQ/dP is given by

L(ωi) =
qi

pi
i = 1, . . . , n
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If pi = 0 then we also have qi = 0 and we can define
the ratio qi/pi arbitrarily.

If p1, . . . , pn as well as q1, . . . , qn are all positive, then
we see that Q ∼ P and in fact

dP

dQ
=

1
L

=
(

dQ

dP

)−1

as could be expected.
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that Q << P on F and that X is
a random variable with X ∈ F . With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

EQ [X] = EP [L ·X]
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and Q with
Q << P on F and with

LF =
dQ

dP
on F

Assume that G ⊆ F and let X be a random variable
with X ∈ F . Then the following holds

EQ [X| G] =
EP

[
LFX

∣∣G]
EP [LF | G]
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Dependence of the σ-algebra

Suppose that we have Q << P on F with

LF =
dQ

dP
on F

Now consider smaller σ-algebra G ⊆ F . Our problem
is to find the R-N derivative

LG =
dQ

dP
on G

We recall that LG is characterized by the following
properties

1. Q(A) = EP
[
LG · IA

]
∀A ∈ G

2. LG ≥ 0

3. EP
[
LG

]
= 1

4. LG ∈ G
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A natural guess would perhaps be that LG = LF , so
let us check if LF satisfies points 1-4 above.

By assumption we have

Q(A) = EP
[
LF · IA

]
∀A ∈ F

Since G ⊆ F we then have

Q(A) = EP
[
LF · IA

]
∀A ∈ G

so point 1 above is certainly satisfied by LF . It is
also clear that LF satisfies points 2 and 3. It thus
seems that LF is also a natural candidate for the R-N
derivative LG, but the problem is that we do not in
general have LF ∈ G.

This problem can, however, be fixed. By iterated
expectations we have, for all A ∈ G,

EP
[
LF · IA

]
= EP

[
EP

[
LF · IA

∣∣G]]
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Since A ∈ G we have

EP
[
LF · IA

∣∣G]
= EP

[
LF

∣∣G]
IA

Let us now define LG by

LG = EP
[
LF

∣∣G]
We then obviously have LG ∈ G and

Q(A) = EP
[
LG · IA

]
∀A ∈ G

It is easy to see that also points 2-3 are satisfied so we
have proved the following result.
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A formula for LG

Proposition 5: If Q << P on F and G ⊆ F then,
with notation as above, we have

LG = EP
[
LF

∣∣G]
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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space Ω and that instead of just
one σ-algebra F we have a filtration, i.e. an increasing
family of σ-algebras {Ft}t≥0.

The interpretation is as usual that Ft is the information
available to us at time t, and that we have Fs ⊆ Ft

for s ≤ t.

Now assume that we also have another measure Q,
and that for some fixed T , we have Q << P on FT .
We define the random variable LT by

LT =
dQ

dP
on FT

Since Q << P on FT we also have Q << P on Ft

for all t ≤ T and we define

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

For every t we have Lt ∈ Ft, so L is an adapted
process, known as the likelihood process.

Tomas Björk, 2010 20



The L process is a P martingale

We recall that

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

Since Fs ⊆ Ft for s ≤ t we can use Proposition 5 and
deduce that

Ls = EP [Lt| Fs] s ≤ t ≤ T

and we have thus proved the following result.

Proposition: Given the assumptions above, the
likelihood process L is a P -martingale.
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Where are we heading?

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and Q will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P -martingale, we have the following
natural questions.

• What does a martingale look like in a Wiener driven
framework?

• Suppose that we have a P -Wiener process W and
then change measure from P to Q. What are the
properties of W under the new measure Q?

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem
respectively.
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1.3

The Martingale Representation Theorem
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Intuition

Suppose that we have a Wiener process W under
the measure P . We recall that if h is adapted (and
integrable enough) and if the process X is defined by

Xt = x0 +
∫ t

0

hsdWs

then X is a a martingale. We now have the following
natural question:

Question: Assume that X is an arbitrary martingale.
Does it then follow that X has the form

Xt = x0 +
∫ t

0

hsdWs

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W?
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W . Consider for
example the process X defined by

Xt =

{
0 for 0 ≤ t < 1
Z for t ≥ 1

where Z is an random variable, independent of W ,
with E [Z] = 0.

X is then a martingale (why?) but it is clear (how?)
that it cannot be written as

Xt = x0 +
∫ t

0

hsdWs

for any process h.
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Intuition

The intuitive reason why we cannot write

Xt = x0 +
∫ t

0

hsdWs

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration
{Ft}t≥0 is the one generated by the Wiener
process W .
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The Martingale Representation Theorem

Theorem. Let W be a P -Wiener process and assume
that the filtation is the internal one i.e.

Ft = FW
t = σ {Ws; 0 ≤ s ≤ t}

Then, for every (P,Ft)-martingale X, there exists a
real number x and an adapted process h such that

Xt = x +
∫ t

0

hsdWs,

i.e.
dXt = htdWt.

Proof: Hard. This is very deep result.
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

Xt = x +
∫ t

0

hsdWs,

The Theorem does not, however, tell us how to find
or construct the process h.
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1.4

The Girsanov Theorem
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Setup

Let W be a P -Wiener process and fix a time horizon
T . Suppose that we want to change measure from P
to Q on FT . For this we need a P -martingale L with
L0 = 1 to use as a likelihood process, and a natural
way of constructing this is to choose a process g and
then define L by{

dLt = gtdWt

L0 = 1

This definition does not guarantee that L ≥ 0, so we
make a small adjustment. We choose a process ϕ and
define L by {

dLt = LtϕtdWt

L0 = 1

The process L will again be a martingale and we easily
obtain

Lt = e
R t
0 ϕsdWs−1

2

R t
0 ϕ2

sds
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Thus we are guaranteed that L ≥ 0. We now change
measure form P to Q by setting

dQ = LtdP, on Ft, 0 ≤ t ≤ T

The main problem is to find out what the properties
of W are, under the new measure Q. This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem: Choose an adapted process ϕ, and define
the process L by{

dLt = LtϕtdWt

L0 = 1

Assume that EP [LT ] = 1, and define a new mesure Q
on FT by

dQ = LtdP, on Ft, 0 ≤ t ≤ T

Then Q << P and the process WQ, defined by

WQ
t = Wt −

∫ t

0

ϕsds

is Q-Wiener. We can also write this as

dWt = ϕtdt + dWQ
t
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Changing the drift in an SDE

The single most common use of the Girsanov Theorem
is as follows.

Suppose that we have a process X with P dynamics

dXt = µtdt + σtdWt

where µ and σ are adapted and W is P -Wiener.

We now do a Girsanov Transformation as above, and
the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

dWt = ϕtdt + dWQ
t

and substituting this into the P -dynamics we obtain
the Q dynamics as

dXt = {µt + σtϕt} dt + σtdWQ
t

Moral: The drift changes but the diffusion is
unaffected.
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The Converse of the Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem. Assume that:

• Q << P on FT , with likelihood process

Lt =
dQ

dP
, on Ft 0,≤ t ≤ T

• The filtation is the internal one .i.e.

Ft = σ {Ws; 0 ≤ s ≤ t}

Then there exists a process ϕ such that{
dLt = LtϕtdWt

L0 = 1
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The Martingale Approach

Ch. 10-12
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Financial Markets

Price Processes:

St =
[
S0

t , ..., SN
t

]
Example: (Black-Scholes, S0 := B, S1 := S)

dSt = αStdt + σStdWt,

dBt = rBtdt.

Portfolio:
ht =

[
h0

t , ..., h
N
t

]
hi

t = number of units of asset i at time t.

Value Process:

V h
t =

N∑
i=0

hi
tS

i
t = htSt
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a
new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dVt =
N∑

i=0

hi
tdSi

t

Major insight:
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.

NB! This simple observation is in fact the basis of the
following theory.

Tomas Björk, 2010 37



Arbitrage

The portfolio u is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Main Question: When is the market free of arbitrage?
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First Attempt

Proposition: If S0
t , · · · , SN

t are P -martingales, then
the market is free of arbitrage.

Proof:
Assume that V is an arbitrage strategy. Since

dVt =
N∑

i=0

hi
tdSi

t,

V is a P -martingale, so

V0 = EP [VT ] > 0.

This contradicts V0 = 0.

True, but useless.
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Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

(We would have to assume that α = r = 0)

We now try to improve on this result.
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Choose S0 as numeraire

Definition:
The normalized price vector Z is given by

Zt =
St

S0
t

=
[
1, Z1

t , ..., ZN
t

]
The normalized value process V Z is given by

V Z
t =

N∑
0

hi
tZ

i
t.

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

• S-arbitrage ⇐⇒ Z-arbitrage.

• S-self-financing ⇐⇒ Z-self-financing.

Insight:

• If h self-financing then

dV Z
t =

N∑
1

hi
tdZ

i
t

• Thus, if the normalized price process Z is a P -
martingale, then V Z is a martingale.
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Second Attempt

Proposition: If Z0
t , · · · , ZN

t are P -martingales, then
the market is free of arbitrage.

True, but still fairly useless.

Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

dZ1
t = (α− r)Z1

t dt + σZ1
t dWt,

dZ0
t = 0dt.

We would have to assume “risk-neutrality”, i.e. that
α = r.
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Arbitrage

Recall that h is an arbitrage if

• h is self financing

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Major insight

This concept is invariant under an equivalent change
of measure!
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Martingale Measures

Definition: A probability measure Q is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

Zi
t =

Si
t

S0
t

, i = 0, . . . , N

are Q-martingales.

Wan now state the main result of arbitrage theory.
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First Fundamental Theorem

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.

Note:

• The martingale measure will depend on your choice
of numeraire.

• The martingale measure (if it exists) is not
necessarily unique.
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Comments

• It is very easy to prove that existence of EMM
imples no arbitrage (see below).

• The other imnplication is technically very hard.

• For discrete time and finite sample space Ω the hard
part follows easily from the separation theorem for
convex sets.

• For discrete time and more general sample space we
need the Hahn-Banach Theorem.

• For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.
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Proof that EMM implies no arbitrage

This is basically done above. Assume that there exists
an EMM denoted by Q. Assume that P (VT ≥ 0) = 1
and P (VT > 0) > 0. Then, since P ∼ Q we also have
Q(VT ≥ 0) = 1 and Q(VT > 0) > 0.

Recall:

dV Z
t =

N∑
1

hi
tdZ

i
t

Q is a martingale measure

⇓

V Z is a Q-martingale

⇓

V0 = V Z
0 = EQ

[
V Z

T

]
> 0

⇓

No arbitrage
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Choice of Numeraire

The numeraire price S0
t can be chosen arbitrarily. The

most common choice is however that we choose S0 as
the bank account, i.e.

S0
t = Bt

where
dBt = rtBtdt

Here r is the (possibly stochastic) short rate and we
have

Bt = e
R t
0 rsds
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Example: The Black-Scholes Model

dSt = αStdt + σStdWt,

dBt = rBtdt.

Look for martingale measure. We set Z = S/B.

dZt = Zt(α− r)dt + ZtσdWt,

Girsanov transformation on [0, T ]:{
dLt = LtϕtdWt,

L0 = 1.

dQ = LTdP, on FT

Girsanov:
dWt = ϕtdt + dWQ

t ,

where WQ is a Q-Wiener process.
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The Q-dynamics for Z are given by

dZt = Zt [α− r + σϕt] dt + ZtσdWQ
t .

Unique martingale measure Q, with Girsanov kernel
given by

ϕt =
r − α

σ
.

Q-dynamics of S:

dSt = rStdt + σStdWQ
t .

Conclusion: The Black-Scholes model is free of
arbitrage.
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Pricing

We consider a market Bt, S
1
t , . . . , SN

t .

Definition:
A contingent claim with delivery time T , is a random
variable

X ∈ FT .

“At t = T the amount X is paid to the holder of the
claim”.

Example: (European Call Option)

X = max [ST −K, 0]

Let X be a contingent T -claim.

Problem: How do we find an arbitrage free price
process Πt [X] for X?
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Solution

The extended market

Bt, S
1
t , . . . , SN

t ,Πt [X]

must be arbitrage free, so there must exist a martingale
measure Q for (Bt, St,Πt [X]). In particular

Πt [X]
Bt

must be a Q-martingale, i.e.

Πt [X]
Bt

= EQ

[
ΠT [X]

BT

∣∣∣∣Ft

]

Since we obviously (why?) have

ΠT [X] = X

we have proved the main pricing formula.
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Risk Neutral Valuation

Theorem: For a T -claim X, the arbitrage free price is
given by the formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
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Risk Neutral Valuation

Theorem: For a T -claim X, and the numearire S0

the arbitrage free price is given by the formula

Πt [X] = S0
t E0

[
X

S0
T

∣∣∣∣Ft

]
where E0 denotes expectation w.r.t. the martingale
measure Q0 associated with the numeraire S0.
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Example: The Black-Scholes Model

Q-dynamics:

dSt = rStdt + σStdWQ
t .

Simple claim:
X = Φ(ST ),

Πt [X] = e−r(T−t)EQ [Φ(ST )| Ft]

Kolmogorov ⇒

Πt [X] = F (t, St)

where F (t, s) solves the Black-Scholes equation:
∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Problem

Recall the valuation formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
What if there are several different martingale measures
Q?

This is connected with the completeness of the
market.
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Hedging

Def: A portfolio is a hedge against X (“replicates
X”) if

• h is self financing

• VT = X, P − a.s.

Def: The market is complete if every X can be
hedged.

Pricing Formula:
If h replicates X, then a natural way of pricing X is

Πt [X] = V h
t

When can we hedge?
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Second Fundamental Theorem

The second most important result in arbitrage theory
is the following.

Theorem:

The market is complete

iff

the martingale measure Q is unique.

Proof: It is obvious (why?) that if the market
is complete, then Q must be unique. The other
implication is very hard to prove. It basically relies on
duality arguments from functional analysis.
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Black-Scholes Model

Q-dynamics

dSt = rStdt + σStdWQ
t ,

dZt = ZtσdWQ
t

Mt = EQ
[
e−rTX

∣∣Ft

]
,

Representation theorem for Wiener processes
⇓

there exists g such that

Mt = M(0) +
∫ t

0

gsdWQ
s .

Thus

Mt = M0 +
∫ t

0

h1
sdZs,

with h1
t = gt

σZt
.
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Result:
X can be replicated using the portfolio defined by

h1
t = gt/σZt,

hB
t = Mt − h1

tZt.

Moral: The Black Scholes model is complete.
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Special Case: Simple Claims

Assume X is of the form X = Φ(ST )

Mt = EQ
[
e−rTΦ(ST )

∣∣Ft

]
,

Kolmogorov backward equation ⇒ Mt = f(t, St){
∂f
∂t + rs∂f

∂s + 1
2σ

2s2∂2f
∂s2 = 0,

f(T, s) = e−rTΦ(s).

Itô ⇒
dMt = σSt

∂f

∂s
dWQ

t ,

so

gt = σSt ·
∂f

∂s
,

Replicating portfolio h:

hB
t = f − St

∂f

∂s
,

h1
t = Bt

∂f

∂s
.

Interpretation: f(t, St) = V Z
t .
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Define F (t, s) by

F (t, s) = ertf(t, s)

so F (t, St) = Vt. Then hB
t = F (t,St)−St

∂F
∂s (t,St)

Bt
,

h1
t = ∂F

∂s (t, St)

where F solves the Black-Scholes equation

{
∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Main Results

• The market is arbitrage free ⇔ There exists a
martingale measure Q

• The market is complete ⇔ Q is unique.

• Every X must be priced by the formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
for some choice of Q.

• In a non-complete market, different choices of Q
will produce different prices for X.

• For a hedgeable claim X, all choices of Q will
produce the same price for X:

Πt [X] = Vt = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
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Completeness vs No Arbitrage
Rule of Thumb

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Rule of thumb

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model.

dSt = αStdt + σStdWt,

dBt = rBtdt.

For B-S we have N = R = 1. Thus the Black-Scholes
model is arbitrage free and complete.
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Stochastic Discount Factors

Given a model under P . For every EMM Q we define
the corresponding Stochastic Discount Factor, or
SDF, by

Dt = e−
R t
0 rsdsLt,

where

Lt =
dQ

dP
, on Ft

There is thus a one-to-one correspondence between
EMMs and SDFs.

The risk neutral valuation formula for a T -claim X can
now be expressed under P instead of under Q.

Proposition: With notation as above we have

Πt [X] =
1
Dt

EP [DTX| Ft]

Proof: Bayes’ formula.
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Martingale Property of S ·D

Proposition: If S is an arbitrary price process, then
the process

StDt

is a P -martingale.

Proof: Bayes’ formula.
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3.

Change of Numeraire

Ch. 26
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General change of numeraire.

Idea: Use a fixed asset price process St as numeraire.
Define the measure QS by the requirement that

Π (t)
St

is a QS-martingale for every arbitrage free price process
Π (t).

We assume that we know the risk neutral martingale
measure Q, with B as the numeraire.
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Constructing QS

Fix a T -claim X. From general theory:

Π0 [X] = EQ

[
X

BT

]
Assume that QS exists and denote

Lt =
dQS

dQ
, on Ft

Then

Π0 [X]
S0

= ES

[
ΠT [X]

ST

]
= ES

[
X

ST

]

= EQ

[
LT

X

ST

]
Thus we have

Π0 [X] = EQ

[
LT

X · S0

ST

]
,
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For all X ∈ FT we thus have

EQ

[
X

BT

]
= EQ

[
LT

X · S0

ST

]

Natural candidate:

Lt =
dQS

t

dQt
=

St

S0Bt

Proposition:

Π (t) /Bt is a Q-martingale.
⇓

Π (t) /St is a QS-martingale.
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Proof.

ES

[
Π (t)
St

∣∣∣∣Fs

]
=

EQ
[
Lt

Π(t)
St

∣∣∣Fs

]
Ls

=
EQ

[
Π(t)
BtS0

∣∣∣Fs

]
Ls

=
Π (s)

B(s)S0Ls

=
Π (s)
S(s)

.
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Result

Πt [X] = StE
S

[
X

St

∣∣∣∣Ft

]
We can observe St directly on the market.

Example: X = St · Y

Πt [X] = StE
S [Y | Ft]
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Several underlying

X = Φ [S0(T ), S1(T )]

Assume Φ is linearly homogeous. Transform to Q0.

Πt [X] = S0(t)E0

[
Φ [S0(T ), S1(T )]

S0(T )

∣∣∣∣Ft

]

= S0(t)E0 [ϕ (ZT )| Ft]

ϕ (z) = Φ [1, z] , Zt =
S1(t)
S0(t)
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Exchange option

X = max [S1(T )− S0(T ), 0]

Πt [X] = S0(t)E0 [max [Z(T )− 1, 0]| Ft]

European Call on Z with strike price K. Zero interest
rate.

Piece of cake!
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Identifying the Girsanov Transformation

Assume Q-dynamics of S known as

dSt = rtStdt + StvtdWt

Lt =
St

S0Bt

From this we immediately have

dLt = LtvtdWt.

and we can summarize.

Theorem:The Girsanov kernel is given by the
numeraire volatility vt, i.e.

dLt = LtvtdWt.
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