SF3940- PROBABILITY THEORY SPRING 2016

HOMEWORK 2

DUE MARCH 14, 2016

You must be able to explain the following concepts:

• Random variables, distribution function, Lebesgue integral, Fubini's theorem, expected value, independence, convergence in probability, convergence almost surely

Solve at least *four* of the following problems *and* one problems of your own choice (either one of the remaining two below or one problems from the book you are using).

PROBLEM 1. Let (Ω, \mathcal{F}, P) be a probability space. Let A_1, \ldots, A_n be sets in \mathcal{F} and $A = \bigcup_{k=1}^n A_k$.

- (a) Show $I_A = 1 \prod_{k=1}^n (1 I_{A_k}).$
- (b) Take expected value on both sides and derive the *inclusion-exclusion formula*.
- (c) Show that $I_A \leq \sum_{k=1}^n I_{A_k}$ and derive the Bonferroni inequalities

$$P(A) \leq \sum_{k=1}^{n} P(A_k),$$

$$P(A) \geq \sum_{k=1}^{n} P(A_k) - \sum_{k < l} P(A_k \cap A_l),$$

$$P(A) \leq \sum_{k=1}^{n} P(A_k) - \sum_{k < l} P(A_k \cap A_l) + \sum_{k < l < m} P(A_k \cap A_l \cap A_m),$$

$$\vdots \text{ etc}$$

PROBLEM 2. Show that X_1, X_2, \ldots are independent if $\sigma(X_1, \ldots, X_{n-1})$ and $\sigma(X_n)$ are independent for each n.

PROBLEM 3. Show that for a nonnegative and integrable random variable X

$$E[X] = \int_0^\infty P\{X > t\}dt.$$

PROBLEM 4. (a) For a counting random variable $X = \sum_{k=1}^{n} I_{A_k}$, give a formula for the variance of X in terms of $P\{A_k\}$ and $P\{A_k \cap A_l\}$.

(b) If k balls are put at random into n boxes, what is the variance for X = the number of empty boxes?

Henrik Hult	E-mail: hult@kth.se
KTH Royal Institute of Technology	Website: http://www.math.kth.se/~hult
Department of Mathematics	Phone: 790 6911
10044 Stockholm, SWEDEN	Fax: 723 1788

PROBLEM 5. A function $\varphi: \Omega \to \mathbb{R}$ is simple if

$$\varphi(\omega) = \sum_{k=1}^{n} c_k I\{\omega \in A_k\},\$$

where c_k are real numbers and $A_k \in \mathcal{F}$.

- (a) Show that the class of \mathcal{F} -measurable functions is the smallest class containing the simple functions and closed under point wise limits.
- (b) Use (a) to show that Y is measurable with respect to $\sigma(X)$ if and only if Y = f(X) for some measurable function $f : \mathbb{R} \to \mathbb{R}$.
- (c) To get a constructive proof of (b), note that

$$\{\omega: m2^{-n} \le Y < (m+1)2^{-n}\} = \{\omega: X \in B_{mn}\}\$$

for some Borel sets B_{mn} and set $f_n(x) = m2^{-n}$ for $x \in B_{mn}$. Then show that $f_n(x) \to f(x)$ and Y = f(X).

PROBLEM 6. Let d(X, Y) be the infimum of those positive ϵ for which $P\{|X - Y| \ge \epsilon\} \le \epsilon$.

- (a) Show that d(X,Y) = 0 off X = Y with probability 1. Identify random variables that are equal with probability 1 and show that d is a metric on the resulting space.
- (b) Show that $X_n \to X$ in probability iff $d(X_n, X) \to 0$.

Henrik Hult KTH Royal Institute of Technology Department of Mathematics 100 44 Stockholm, SWEDEN E-mail: hult@kth.se Website: http://www.math.kth.se/~hult Phone: 790 6911 Fax: 723 1788