SF3940- PROBABILITY THEORY SPRING 2016

HOMEWORK 5

DUE APRIL 4, 2016

You must be able to explain the following concepts:

• Hewitt-Savage 0-1 law, the recurrence dichotomy, recurrence and transience of simple random walk on \mathbb{Z}^d , the Chung-Fuchs recurrence criteria, the reflection principle for simple random walks, the arcsin laws.

Solve *three* of the following problems.

PROBLEM 1. Show that if the random walk (S_n) is recurrent, then so is the random walk (S_{nk}) for each k = 1, 2, ...

PROBLEM 2. Let (S_n) be a random walk in \mathbb{R} with increments from a symmetric non degenerate distribution with bounded support. Show that (S_n) is recurrent.

PROBLEM 3. Let X_1, X_2, \ldots be iid on \mathbb{R} and $S_0 = 0, S_n = X_1 + \cdots + X_n, n \ge 1$. Put $\tau_0 = 0$ and

$$\tau_k = \inf\{n > \tau_{k-1} : X_{\tau_{k-1}+1} + \dots + X_{\tau_{k-1}+n} > 0\}, \quad k \ge 1.$$

(a) Show that $P\{\tau_1 < \infty\} < 1 \Rightarrow P\{\sup_n S_n < \infty\} = 1$. (b) Show that $P\{\tau_1 < \infty\} = 1 \Rightarrow P\{\sup_n S_n = \infty\} = 1$.

(c) Put $\sigma = \inf\{n : S_n < 0\}$ and show that the four combinations of $P\{\tau_1 < \infty\} < 1$ or = 1, and $P\{\sigma < \infty\} < 1$ or = 1 corresponds to the four possibilities $S_n = 0$ for all $n, S_n \to \infty$, $S_n \to -\infty$, and $-\infty = \liminf S_n < \limsup_n S_n = \infty$.

PROBLEM 4. Consider the previous exercise and let $\bar{\sigma} = \inf\{n : S_n \leq 0\}$. Show that

$$E\tau_1 = \frac{1}{P\{\bar{\sigma} = \infty\}}$$

PROBLEM 5. (a) Let (S_n) be a random walk based on the symmetric α -stable distribution on \mathbb{R} with characteristic function $e^{-|t|^{\alpha}}$. Show that (S_n) is recurrent for $\alpha \geq 1$ and transient for $\alpha < 1.$

(b) Let (S_n) be a random walk based on the symmetric α -stable distribution on \mathbb{R}^2 with characteristic function $e^{-|t|^{\alpha}}$. Show that (S_n) is recurrent for $\alpha = 2$ and transient for $\alpha < 2$.

PROBLEM 6. For any symmetric, recurrent random walk on \mathbb{Z}^d , show that the expected number of visits to an accessible state $k \neq 0$ before return to the origin equals 1. (Hint: Compute the distribution, assuming probability p for return before visit to k.)

Henrik Hult	E-mail: hult@kth.se
KTH Royal Institute of Technology	Website: http://www.math.kth.se/~hult
Department of Mathematics	Phone: 790 6911
10044 Stockholm, SWEDEN	Fax: 723 1788