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1 What is game theory?

A mathematically formalized theory of strategic interaction between

– countries at war and peace, in federations and international negotiations

– political candidates and parties competing for power

– firms in markets, owners and managers, employers and trade-unions

– members of communities with a common pool of resources

– family members and generations who care about each other’s well-being

– animals within the same species, from different species, plants, cells

– agents in networks: computers, cell phones, vehicles in traffic systems



2 A brief history of game theory

• Emile Borel (1920s): Small zero-sum games

• John von Neumann (1928): the Maxmin Theorem

• von Neumann and Oskar Morgenstern (1944): Games and Economic
Behavior

• John Nash (1950): Non-cooperative equilibrium [“A Beautiful Mind”]

• Thomas Schelling (1960s-): Strategic commitment, peace and war

• John Harsanyi (1960s): Incomplete information



• Reinhard Selten (1970s): Rationality as the limit of bounded rationality

• John Maynard Smith (1970s): Evolutionary stability

• Robert Aumann (1950s-): Long-run cooperation



3 Three simple examples

3.1 Prisoners’ dilemma games

• Two fishermen, fishing in the same area

• Each fisherman can either fish modestly, M , or aggressively, A. The

profits are

M A
M 3, 3 1, 4
A 4, 1 2, 2

• Both prefer (M,M), and both dislike (A,A)



• If each of them strives to maximize his or her profit, and they are both

rational: (A,A)

• Competition leads to over-exploitation, not welfare maximum (What

about Adam Smith’s “invisible hand”?)

• Would monopoly be better?



3.2 Coordination games

• Two investors & two projects, project A and project B

• (A,A) gives higher expected profits to both investors than (B,B)

• Investment A has a positive externality on investment B

• Investor 1 chooses row, investor 2 column:

A B
A 5, 5 0, 4
B 4, 0 3, 3

• What are the Nash equilibria?



• If individuals were recurrently and (uniformly) randomly matched into
pairs, in a large population, would there be any “stable” strategy?

• Pre-play communication: Suppose investor 2 suggests that you both
invest in project A. Would that make investment alternative A more

appealing?

• Note the belief indifference point: Pr (A) = 3/4

• The notion of risk dominance (Harsanyi and Selten, 1988)



3.3 Partnership games

• Two partners in a business

• Each partner has to choose between “contribute” (“work”) and “free-
ride” (“shirk”)

- If both choose W: expected gain to both

- If one chooses W and the other S: net loss to the first and gain to

the second

- If both choose S: expected heavy loss to both

W S
W 3, 3 −1, 4
S 4,−1 −2,−2

• This is not a Prisoners’ Dilemma: S does not dominate W



• What are the Nash equilibria?

• If individuals are recurrently and randomly matched to pairs, in a large
population, would there be any evolutionarily stable strategy?

Pr (W ) = Pr (S) =
1

2



4 Discussion

• Game theory as a paradigm for understanding strategic interaction

in economics

in political science

in psychology and sociology

in biology

in computer science

• Positive versus normative analysis

• Quantitative versus qualitative analysis



• Solution concepts: dominance, rationalizability, Nash equilibrium, subgame-
perfect equilibrium, sequential equilibrium, perfect equilibrium, proper

equilibrium, essential equilibrium, strategically stable sets, sets closed

under rational behavior, evolutionary stability, equilibrium evolutionary

stability...

• A game as a mathematical object: the normal (or strategic) form and

the extensive form, on which we apply solution concepts



5 Informally about the extensive form

a a bb

(3,1) (0,0) (1,3)(0,0)

A B

1

2 2

Game 1

• Four possible plays



• Perfect-information games vs. games of imperfect information

• Suppose that player 2 is not informed about 1’s move:

a a bb

(3,1) (0,0) (1,3)(0,0)

A B

1

2

Game 2



• In this game, player 2 cannot condition his choice on 1’s action.

• Pure strategies in Game 1: S1 = {A,B}, S2 = {aa, ab, ba, bb}

• Pure strategies in Game 2: S01 = {A,B}, S02 = {a, b}

• What should player 1 reasonably expect about 2’s move in Game 1?

• Backward induction

• First-mover advantage

• Are there games with a second-mover advantage?



a a bb

(3,0) (0,1) (1,0)(0,3)

A B

1

2 2

Game 3



6 Informally about the normal form

Game 1:
aa ab ba bb

A (3, 1) (3, 1) (0, 0) (0, 0)
B (0, 0) (1, 3) (0, 0) (1, 3)

Game 2:
a b

A (3, 1) (0, 0)
B (0, 0) (1, 3)

• Pure and mixed strategies.

• Payoffs interpreted as the players’ “utilities,” both in the EF and in the
NF.



• Given the normal-form representation of Game 1, what is our prediction
that player 1 will do?

• Strictly and weakly dominated strategies

• Nash equilibrium: a strategy profile such that if you expect the others
to play according to it, then you cannot increase your own payoff by

changing your own strategy [John Nash: “A Beautiful Mind”, Eco-

nomics Nobel memorial prize 1994]



7 Extensive forms with the same normal form

An entry-deterrence game: A potential entrant (player 1) into a monopo-

list’s (player 2) market

C F

(1,3) (0,0)(2,2)

A E

1

2

Game 4



• Its normal form:
C F

A 1, 3 1, 3
E 2, 2 0, 0

Two pure-strategy NE in this game: (A,F ) and (E,C), but only the

latter satisfies backward induction.

• Another extensive form game with the same normal form:

C C FF 

(1,3) (1,3) (0,0)(2,2)

A E

1

2

Game 5



• If players are rational, should the two extensive forms be deemed strate-
gically equivalent?

• What if the players are boundedly rational?



8 Preferences and payoff functions

• A set X of alternatives x, y, z...

• Preferences as binary relations < on X: x < y

* Transitivity : if x < y and y < z, then x < z

* Completeness: either x < y or y < x or both

• Indifference x ∼ y and strict preference x Â y

Definition 8.1 Let < be a binary relation on a set X. A utility function

for < is a function u : X → R such that u (x) ≥ u (y) iff x < y.

• Completeness and transitivity are necessary for such numerical repre-
sentation



• If u is a utility function, then so is v = h ◦ u for any strictly increasing
function h : R→ R: u (x) ≥ u (y) ⇔ h [u (x)] ≥ h [u (y)] ⇔ v (x) ≥
v (y).

In games:

1. For each player, a real-valued function over the set of possible plays of

the game, the player’s Bernoulli function.

2. For each player, a real-valued function over the set of strategy profiles

of the game, the player’s payoff function



8.1 Social preferences

• Most humans do not only care about their own material well-being but
also about that of others

• The caring can be positive (altruism) or negative (spitefulness). People
may like fairness, may have a desire to do as others’ do (conformity,

social norms), seek others’ esteem, avoid shame or guilt etc.

• Consider again a prisoners’ dilemma, but now with monetary payoffs
(a so-called game protocol)

C D
C 3, 3 0, 4
D 4, 0 2, 2



• D strictly dominates C, for each player, in terms of monetary gains

• ⇒ (D,D) played if both players are selfish

• Suppose that each player cares about the other’s monetary gain:

C D
C 3 + 3a, 3 + 3b 4a, 4
D 4, 4b 2 + 2a, 2 + 2b

for some a, b ∈ R

• If a = b = 1/2 (altruism of degree 1/2):

C D
C 4.5, 4.5 2, 4
D 4, 2 3, 3

,



• Now both (C,C) and (D,D) are Nash equilibria: A coordination game!

• Hence: altruistic and rational individuals may (but need not) cooperate
in a prisoners’ dilemma protocol.



9 Some mathematics

9.1 Notation and tools

1. Useful sets: N the positive integers, R the reals, R+ the non-negative
reals, Q ⊂ R the rationals

2. Definition: Injections f : X → Y :

x 6= x0 ⇒ f (x) 6= f
³
x0
´

3. Definition: A set X is countable if ∃ injection f : X → N

4. Definitions: open, closed and bounded sets X ⊂ Rn, the interior and
closure of sets X ⊂ Rn



5. Definition: upper-contour sets for a function f : X → R

{x ∈ X : f (x) ≥ α}

6. Definition: convex sets X ⊂ Rn

x, y ∈ X ⇒ λx+ (1− λ) y ∈ X ∀λ ∈ [0, 1]

7. Definition: A function f : Rn → R is quasi-concave if all its upper

contour-sets are convex

8. Definition: Given a function f : X → R

arg max
x∈X

f (x) := {x∗ ∈ X : f (x∗) ≥ f (x) ∀x ∈ X}



9. Some useful results:

Theorem 9.1 (Weierstrass’ Maxium Theorem) If X ⊂ Rn is non-empty
and compact, and f : Rn → R is continuous, then argmaxx∈X f (x) is

non-empty and compact.

Proposition 9.2 If X ⊂ Rn is convex and f : Rn→ R quasi-concave, then
argmaxx∈X f (x) is convex.



9.2 Correspondences

A correspondence ϕ from a set X to a set Y , written ϕ : X ⇒ Y , is a

function that assigns a non-empty set ϕ (x) ⊂ Y to each x ∈ X. (Hence,

a non-empty valued function from X to 2Y .)

Let X ⊂ Rn and Y ⊂ Rm:

Definition 9.1 A correspondence ϕ : X ⇒ Y is upper hemi-continuous

(u.h.c.) at x ∈ X if for every open set B containing ϕ(x) there exists an

open set A such that x ∈ A and ϕ(x0) ⊂ B ∀x0 ∈ A ∩X.

Definition 9.2 A correspondence ϕ : X ⇒ Y is lower hemi-continuous

(l.h.c.) at x ∈ X if for every open set B such that ϕ(x) ∩ B 6= ∅ there

exists a neighborhood A of x such that ϕ(x0) ∩B 6= ∅ ∀x0 ∈ A ∩X.



Definition 9.3 A correspondence ϕ : X ⇒ Y is continuous at x ∈ X if it

is both u.h.c. and l.h.c. at x.

Definition 9.4 A correspondence is u.h.c. (l.h.c., continuous) if it is u.h.c.

(l.h.c., continuous) at each point in its domain.



9.3 Fixed-Point Theorems

Theorem 9.3 (Brouwer’s Fixed-Point Theorem) If X ⊂ Rn is non-empty,
compact and convex, and f : X → X is continuous, then there exists at

least one x∗ ∈ X such that x∗ = f (x∗).

Theorem 9.4 (Kakutani’s Fixed-Point Theorem) IfX ⊂ Rn is non-empty,
compact and convex, and ϕ : X ⇒ X is convex-valued, closed-valued and

u.h.c., then there exists at least one x∗ ∈ X such that x∗ ∈ ϕ (x∗).



9.4 Berge’s Maximum Theorem

Consider

max
x∈γ(a)

f (x, a)

where f : Rn×Rk → R is continuous and γ : Rk ⇒ Rn is compact-valued.
Let

v(a) = max
x∈γ(a)

f (x, a) and ξ(a) = arg max
x∈γ(a)

f (x, a)

Here γ is called the constraint correspondence, v the value function and ξ

the solution correspondence (a selection from γ: ξ(a) ⊂ γ (a) ∀a.)

Theorem 9.5 (Berge’s Maximum Theorem) Suppose that f : Rn×Rk →
R and γ : Rk ⇒ Rn are continuous. Then ξ : Rk ⇒ Rn is u.h.c. and
compact-valued, and v : Rk → R is continuous.


