REPEATED GAMES

Jörgen Weibull

April 13, 2010

Q1: Can repetition induce cooperation?

• Peace and war

• Oligopolistic collusion

• Cooperation in the tragedy of the commons

Q2: Can a game be repeated?

• Game protocols vs. games.

Preferences

Key concepts: Threats and promises, punishments and rewards

References

- 1. Advanced information on the 2005 Economics Nobel Memorial Prize in Economics (Aumann and Schelling)
- 2. Aumann R.J. (1959): "Acceptable points in general cooperative *n*-person games", in R. D. Luce and A. W. Tucker (eds.), *Contributions to the Theory of Games IV, Annals of Mathematics Study* 40, 287-324, Princeton University Press.
- 3. Friedman J. (1971): "A non-cooperative equilibrium for supergames", Review of Economic Studies 38, 1-12.
- 4. Benoit J.-P. and V. Krishna (1985): "Finitely repeated games", *Econometrica* 53, 905-922.

- 5. Fudenberg D. and E. Maskin (1986): "Folk theorems for repeated games with discounting and incomplete information", *Econometrica* 54, 533-554.
- 6. Abreu D., P. Dutta and L. Smith (1994): "The Folk theorem for repeated games: a NEU condition", *Econometrica* 62, 939-948.
- 7. Mailath G. and L. Samuelson (2006): Repeated Games and Reputations, Oxford University Press.

Disposition of lecture

- 1. Examples
- 2. Infinitely repeated games with discounting
- 3. Solution concepts
- 4. The one-shot deviation principle
- 5. Folk theorems
- 6. Renegotation-proofness

1 Examples

Example 1.1 One repetition can be enough! Play the following game-protocol twice:

Assume risk-neutral and additive preferences over plays

A coordination game to which we have added a strictly dominated strategy, \emph{c}

Assume that moves are observed after first period

Defines a finite extensive-form game. How many subgames?

Find a SPE that obtains payoff 10 to each player!

Example 1.2 Repeated Prisoners' Dilemma protocol:

$$egin{array}{cccc} c & c & d \\ c & 3, 3 & 0, 4 \\ d & 4, 0 & 1, 1 \\ \end{array}$$

Assume risk-neutral and additive preferences with discounting:

$$\Pi_i = \sum_{t=0}^T \delta^t \pi_i\left(s_t
ight) \qquad i = 1, 2$$

for $\delta \in (0,1)$.

- (a) Find all SPE for each $T < +\infty$
- (b) Find all SPE for $T = +\infty$

Example 1.3 Repeated Bertrand duopoly

$$D(p) = \max\{0, 1 - p\}$$

$$\pi_1(p_1, p_2) = \begin{cases} (1 - p_1)(p_1 - c) & \text{if } p_1 < p_2 \\ \frac{1}{2}(1 - p_1)(p_1 - c) & \text{if } p_1 = p_2 \\ 0 & \text{if } p_1 > p_2 \end{cases}$$

$$\pi_2(p_1, p_2) = \begin{cases} (1 - p_2)(p_2 - c) & \text{if } p_2 < p_1 \\ \frac{1}{2}(1 - p_2)(p_2 - c) & \text{if } p_2 = p_1 \\ 0 & \text{if } p_2 > p_1 \end{cases}$$

$$(p_i, c \in [0, 1])$$

Unique NE in one-shot interaction:

$$p_1^* = p_2^* = c$$
 $\pi_1^* = \pi_2^* = 0$

Optimal cartel price = monopoly price:

$$\max_{p} (1-p) (p-c)$$

$$\Rightarrow p^{m} = \frac{c+1}{2}$$

$$\Pi^m = \max_{p_1, p_2} (\pi_1 + \pi_2) = \frac{(1-c)^2}{4} > 0$$

Assume risk-neutrality, additivity and discounting $\delta \in (0,1)$

Can optimal cartel profits be maintained under finite repetition?

Under infinite repetition?

- Is the infinitely repeated game the relevant model?
- What about finitely repeated but with uncertain duration?
- Interpretation of the discount factor as a continuation probability
- A partial relief: the discontinuity at infinity disappears if the n-player stage-game has multiple Nash equilibria, the payoffs of which span a subset of dimension n. Theorem 3.7 in Benoit and Krishna (1985)
- Analysis of the case of a decreasing discount factor: Bernheim and Dasgupta (1995), Journal of Economic Theory

2 Infinitely repeated games with discounting

• Simultaneous-move Euclidean stage-game protocol $G=(N,A,\pi)$, for

$$N = \{1, ..., n\}$$
 $A = \times_{i=1}^{n} A_{i}$ $\pi : A \to \mathbb{R}^{n}$

with each $A_i \subset \mathbb{R}^{m_i}$ compact and $\pi_i : R^m \to \mathbb{R}$ continuous. Hence $\exists M \in \mathbb{R} \text{ s.t. } |\pi_i(a)| < M \text{ for all } i \text{ and } a \in A$

- Terminology: $a_i \in A_i$ "actions": could be pure or mixed strategies
- Time periods $t \in \mathbb{N}$
- Perfect monitoring: actions observed after each period (very strong assumption if actions are mixed strategies!)

1. Histories $H = \bigcup_{t \in \mathbb{N}} H_t$:

In the initial period t=0: $H_0=\{\theta\}$ (θ is the "null history")

In any period t>0: $\langle a(0),a(1),...,a(t-1)\rangle \in H_t=A^t$

- 2. *Plays*: (infinite) sequences of action profiles $\tau = \langle a(0), a(1), ..., a(t), ... \rangle \in A^{\infty}$
- 3. Behavior strategies $y_i: H \to A_i$. Let Y_i be the i'th player's set of behavior strategies: For any history $h \in H$, $y_i(h) \in A_i$ is i's subsequent action
- 4. Each behavior-strategy profile y recursively defines a play:

$$a(0) = (y_1(\theta), ..., y_n(\theta))$$

$$a(1) = (y_1(\theta, a(0)), ..., y_n(\theta, a(0)))$$

 $a(2) = (y_1(\theta, a(0), a(1)), ..., y_n(\theta, a(0), a(1)))...$

5. Each player's preferences over plays is assumed to allow additive representation

$$u_i(y) = (1 - \delta) \sum_{t=0}^{+\infty} \delta^t \pi_i [a(t)]$$

for some discount factor $\delta \in (0,1)$, the same for all players i.

 $u_i\left(\tau\right)$ is the average (or normalized) discounted value of the payoff stream associated with play τ

6. This defines an infinite extensive-form game Γ^{δ} , an infinitely repeated game with discounting, with stage game G

• History-contingent continuation strategies, given any history $h \in H$: the restriction of the function y to the subset of histories that begin with h. Notation:

$$y_{|h} = (y_{1|h}, ..., y_{n|h})$$

3 Solution concepts

We will use subgame perfect equilibrium

Definition 3.1 A strategy profile y is a **NE** of Γ^{δ} if

$$u_i(y) \ge u_i(y'_i, y_{-i}) \quad \forall i \in N, y'_i \in Y_i$$

Definition 3.2 A strategy profile y is a SPE of Γ^{δ} if

$$u_i\left(y_{|h}\right) \ge u_i\left(y'_{i|h}, y_{-i|h}\right) \quad \forall i \in N, y'_i \in Y_i, h \in H$$

Remark 3.1 A strategy profile y is a NE of Γ^{δ} iff it prescribes sequential rationality on its own path (as in finite extensive-form games)

Remark 3.2 Unconditional play of a NE of the stage game G, in each period, can be supported in SPE in Γ^{δ} , for any δ .

Remark 3.3 Unconditional play of any given sequence of NE of the stage game G, one NE assigned to each period (irrespective of history), can be supported in SPE in Γ^{δ} , for any δ .

4 The one-shot deviation principle

• In dynamic programming: "unimprovability"

Definition 4.1 A one-shot deviation from $y_i \in Y_i$ is a strategy $y_i' \neq y_i$ that agrees with y_i at all histories but one: $\exists h' \in H$ such that

$$y_i'(h) = y_i(h) \quad \forall h \neq h'$$

Definition 4.2 A one-shot deviation y_i from y_i (at h') is profitable if

$$u_i\left(y'_{i|h'}, y_{-i|h'}\right) > u_i\left(y_{|h'}\right)$$

Proposition 4.1 (One-shot deviation principle) A strategy profile y is a SPE of Γ^{δ} if and only if \nexists profitable one-shot deviation.

Proof:

1. SPE \Rightarrow no profitable one-shot deviation.

2. not SPE $\Rightarrow \exists$ profitable one-shot deviation by "payoff continuity at infinity"

5 Folk theorems

- We focus on infinitely repeated games, as opposed to the limit of finitely repeated games, see Benoit and Krishna (1985)
- Aumann (1959), Friedman (1971), Aumann and Shapley (1976), Rubinstein (1979), Fudenberg and Maskin (1986), Abreu, Dutta and Smith (1994)

Q: What payoff outcomes (average discounted payoff vectors) can be supported in SPE of the infinitely repeated game?

A: "For sufficiently patient players: any feasible and individually rational payoff vector" (The Folk theorem)

5.1 The Nash-threat folk theorem

• The idea: Payoff vectors that can be achieved in the stage game and that Pareto dominates some stage-game Nash equilibrium can be supported in SPE by threat of reversion forever to that Nash equilibrium, granted the players are sufficiently patient.

Theorem 5.1 (Friedman) Assume that $v=\pi\left(a\right)>\pi\left(a^{*}\right)$ for some $a\in A$ and some Nash equilibrium $a^{*}\in A$ in G. There exists a $\overline{\delta}\in\left(0,1\right)$ such that v is a SPE payoff outcome in Γ^{δ} , for every $\delta\in\left[\overline{\delta},1\right)$.

Proof: Consider the following behavior-strategy profile $y \in Y$ in Γ^{δ} : $y(\theta) = a$ and y(h) = a for all histories in which all players took actions a in all preceding periods. For all other histories, let $y(h) = a^*$.

1. On the path of y: there is no profitable for player i iff

$$(1 - \delta) M + \delta \pi_i (a^*) \le \pi_i (a)$$

This holds for all $\delta < 1$ sufficiently close to 1 (since by hypothesis $\pi_i(a^*) < \pi_i(a) \ \forall i$)

2. Off the path of y: then the stage-game NE a^* is prescribed each period, and so no profitable deviation exists

5.2 The general folk theorem for two-player games

Definition 5.1 An action $\bar{a}_i \in A_i$ is a minmax action in G against player $j \neq i$ if

$$\bar{a}_i \in \arg\min_{a_i \in A_i} \left(\max_{a_j \in A_j} \pi_j\left(a\right)\right)$$

Definition 5.2 *Player j's* minmax value:

$$v_{j}^{0} = \min_{a_{i} \in A_{i}} \left(\max_{a_{j} \in A_{j}} \pi_{j} \left(a \right) \right)$$

Definition 5.3 A payoff vector $v \in \mathbb{R}^2$ is (strictly) individually rational if $v > (v_1^0, v_2^0)$.

Definition 5.4 A mutual minmax profile in G is a an action profile $\bar{a} \in A$ such that \bar{a}_1 is a minmax action against player 2 and \bar{a}_2 is a minmax action against player 1

- Note that $\pi(\bar{a}) \leq v^0$ (since the players do not necessarily best-reply to the other's minmax action)
- Note the difference between deterministic and randomized minmaxing
- Examples: PD, MP

Definition 5.5 The set of **feasible payoff vectors** in G: the convex hull of the direct payoff image of the action space:

$$V = co\left[\pi\left(A\right)\right] \subset \mathbb{R}^n$$

Why is convexification natural?

Definition 5.6 The set of feasible and strictly individually rational payoff vectors in G:

$$V^* = \left\{ v \in V : v > v^0 \right\}$$

• Examples: the PD, MP, Cournot duopoly.

Theorem 5.2 (Fudenberg and Maskin) Assume that n=2. For every $v\in V^*$ there exists a $\bar{\delta}\in(0,1)$ such that v can be arbitrarily well approximated by a SPE payoff outcome in Γ^{δ} , for every $\delta\in\left[\bar{\delta},1\right)$.

Proof sketch: Suppose that $v = \pi(a)$ for some action profile $a \in A$ and let $\bar{a} \in A$ be a mutual minmax action profile.* Let M be an upper bound

^{*}More generally, any payoff vector $v \in V^*$ can be arbitrarily well approximated in the repeated game by a suitably chosen sequence of action profiles (such that the discounted average payoff comes close to v).

on all π_1 and π_2 . There exists an integer L > 0 s.t.

$$L \cdot \min_{i \in N} \left[\pi_i \left(a^* \right) - \pi_i \left(\bar{a} \right) \right] > M - \min_{i \in N} \pi_i \left(a^* \right)$$

- 1. In case of defection from play of a: mutual minmaxing for L periods.
- 2. In case of defection from prescribed mutual minmaxing: re-start ${\cal L}$ periods of minmaxing
- 3. For all other histories: prescribe play of some stage-game NE

For $\delta \in (0,1)$ sufficiently close to 1, this deters all deviations. We have to check:

(a) no profitable one-shot deviation from proposed path

- (b) no profitable one-shot deviation from punishment phase. **End of proof** sketch
 - Note the neutrality of the result: it does **not** say that repetition will lead to cooperation (better outcomes than repeated stage-game NE), only that it makes cooperation **possible**, if players are sufficiently patient!
 - What if one player is patient and the other impatient? A very subtle point. See Lehrer and Pauzner (1999), *Econometrica*.
 - What if there is imperfect monitoring? See Mailath and Samuelson (2006)

5.3 General folk theorem for n-player games

ullet For n>2 there may not exist any mutual minmax action-profile. Example: player 1 chooses row, player 2 chooses column and player 3 chooses tri-matrix

Here $v^0=(0,0,0)$ but \nexists action profile that keeps all three players' payoffs non-positive

- ullet Hence, proof cannot be generalized. Not only that: the claim can be show to be false for n>2!
- Fudenberg-Maskin (1986) impose a "full dimensionality" condition (of direct payoff image of action space), and "reward" those who participate in punishment of a player i by returning, after punishment of i, to

a SPE continuation play that is not so good for i but relatively good for the others

• More general result:

Definition 5.7 Two players in G, say i and j, have **equivalent** payoff functions if $\pi_j = \alpha \pi_i + \beta$ for some $\alpha > 0$ and $\beta \in \mathbb{R}$.

Theorem 5.3 (Abreu, Dutta and Smith) Assume that no pair of players have equivalent payoff functions. For every $v \in V^*$ there exists a $\bar{\delta} \in (0,1)$ such that v is a SPE payoff outcome in Γ^{δ} , for every $\delta \in \left[\bar{\delta},1\right)$.

• Proof idea: same as in Fudenberg-Maskin, "reward" those who participate in punishment of a player i by returning, after punishment of i, to a SPE continuation play that is not so good for i but relatively good for the punishers.

6 Renegotiation proofness

In class

- 1. Benoit J.-P. and V. Krishna (1993): "Renegotiation in finitely repeated games", *Econometrica* 61, 303-323.
- 2. van Damme E. (1988): "The impossibility of stable renegotiation", *Economics Letters* 26, 321-324.

Next time: discussion of selected research articles

THE END