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Two topics today:

1. Existence of Nash equilibria (Lecture notes Chapter 10 and Appendix

A)

2. Relations between equilibrium and rationality (Lecture notes Chapter

1)



1 Existence of Nash equilibria

• Broad classes of normal-form games, results that have von Neumann’s

(1928) minimax theorem and Nash’s (1950a,b) existence results as

special cases.

Definition 1.1 A normal-form game is a triplet G = (N,S, π), where

(i) N is the set of players

(ii) S = ×i∈NSi is the set of strategy profiles s = (si)i∈N with Si
denoting the strategy set of player i

(iii) π : S → Rn is the combined payoff function, where πi (s) ∈ R is the
payoff to player i when strategy profile s is played.



• Notation: for any strategy profile s ∈ S, player i ∈ N and strategy

s0i ∈ Si, write
³
s0i, s−i

´
for the strategy profile in which si has been

replaced by s0i

• Notation: for any strategy profile s ∈ S and player i ∈ N , write

βi (s) = arg max
s0i∈Si

πi
³
s0i, s−i

´
=

n
s0i ∈ Si : πi

³
s0i, s−i

´
≥ πi

³
s00i , s−i

´
∀s00i ∈ Si

o

• This defines player i0s (possibly empty-valued) best-reply correspon-
dence βi : S ⇒ Si

• Write β (s) = ×i∈Nβi (s)

• This defines the (possibly empty-valued) best-reply correspondence β :
S ⇒ S of the game G



Definition 1.2 A strategy profile s∗ ∈ S is a Nash equilibrium if s∗ ∈ β (s∗)

• Mixed strategies and the mixed-strategy extension G̃ = (N,M, π̃) of

G.



1.1 Games in Euclidean spaces

• By a Euclidean game we mean a game in which (a) the set N is finite,

(b) each strategy set Si is a subset of Rmi for some mi ∈ N.

Proposition 1.1 Let G = (N,S, π) be a Euclidean game in which each

strategy set Si is non-empty, compact and convex, each payoff function

πi : S → R is continuous, and, moreover, quasi-concave in si ∈ Si. Then

G has at least one Nash equilibrium.

Definition 1.3 A function f : X → R, where X is a convex subset of some

linear vector space, is quasi-concave if all its upper-contour sets

Xa = {x ∈ X : f (x) ≥ a}

are convex.



Proof of the proposition in class:

1. Weierstrass’ Maximum Theorem

2. Continuity properties of correspondences (Kuratovski, Berge)

3. Berge’s Maxiumum Theorem

4. Kakutani’s Fixed-Point Theorem

• Clearly Nash’s (1950) existence result is a special case. Proof in class.



• Consider now Euclidean games G = (N,S, π) in which all strategy sets

are compact and all payoff functions πi continuous

• Its mixed-strategy extension is the normal-form game G̃ (N,M, π̃) in

which

(a) For each player i, Mi = ∆ (Si) is the set of Borel probability

measures μi on Si

(b) M = ×n
i=1Mi.

(c) π̃i : M → R is obtained by taking the mathematical expecta-

tions of the player’s payoff function πi : Si → R, with respect to the
product measure μ on S that arise from each mixed-strategy profile,

μ = (μ1, ..., μn):

π̃i (μ) =
Z
S1
...
Z
Sn

πi (s1, ..., sn) dμ1 (s1) · ... · dμn (sn)



Special case: G finite.

• The following result is a special case of a theorem due to Glicksberg

(1952):

Proposition 1.2 Let G = (N,S, π) be a Euclidean game in which each

strategy set Si is non-empty and compact, and where each payoff function

πi : S → R is continuous. Then its mixed-strategy extension, the game

G̃ = (N,M, π̃), has at least one Nash equilibrium.

Proof idea: View M as a convex linear topological vector space and gen-

eralize Kakutani.



1.2 Games in topological vector spaces

Definition 1.4 A topological vector space is a linear vector space V en-

dowed with a topology such that vector addition (viewed as a function from

V × V to V ) and scalar multiplication (viewed as a mapping from R× V

to V ) are continuous.

Example: Normed linear vector spaces.

• Consider games G = (N,S, π) in which each strategy set Si is a com-

pact subset of some topological vector space, and where each payoff

function is bounded

Definition 1.5 The graph of the combined payoff function π : S → Rn, or
the payoff graph for short, is the set

Π = {(s, v) ∈ S × Rn : π (s) = v}



• Note: If all strategy sets are compact and all payoff functions contin-
uous, then the payoff graph is closed, while this need not be the case

if some or all payoff functions are discontinuous

• Let Π̄ be the closure of the payoff graph.

Definition 1.6 (Reny) A vector-space game G = (N,S, π) is payoff secure

if, for each strategy profile s ∈ S and ε > 0, there exists a pure strategy

ŝi ∈ Si for each player i such that πi
³
ŝi, s

0
−i
´
≥ πi (s) − ε for all s0 ∈ S

in some neighborhood of s.

Definition 1.7 (Reny) A vector-space game G = (N,S, π) is reciprocally

upper semi-continuous (reciprocally u.s.c.) if, for all s ∈ S and v ∈ Rn:

(s, v) ∈ Π̄ and π (s) ≤ v ⇒ π (s) = v



• This condition admits all games with continuous payoff functions

• The condition requires that if one player’s payoff discontinuously jumps
up, then some other player’s payoff simultaneously has to jump down.

• The condition is met if the payoff sum is continuous (as it is in many

price-competition games).

Theorem 1.3 (Reny) Let G = (N,S, π) be a vector-space game in which

each strategy set Si is non-empty, compact and convex, and where each

payoff function πi : S → R is bounded and quasi-concave in si ∈ Si. If

G is payoff-secure and reciprocally u.s.c., then G has at least one Nash

equilibrium.

• This result has Proposition 1.1 as an immediate corollary.



• It applies to some discontinuous games that arise in models of price
competition and auctions.

• Consider now the mixed-strategy extension, G̃ = (N,M, π̃), of a

vector-space game G = (N,S, π), where each set Mi is the set of

regular Borel measures on Si.

Proposition 1.4 (Reny) Let G = (N,S, π) be a vector-space game in

which each strategy set Si is non-empty, Hausdorff, compact and convex,

and where each payoff function πi : S → R is bounded and Borel measur-
able, and, moreover, quasi-concave in si. If G̃ = (N,M, π̃) is payoff-secure

and reciprocally u.s.c., then G̃ has at least one Nash equilibrium.

Remark 1.1 Reciprocal upper semi-continuity of G̃ implies that ofG. How-

ever, reciprocal upper semi-continuity of G does not imply that of G, and

payoff security of G neither implies nor is implied by payoff security of G̃.



2 Equilibrium and rationality

2.1 The rationalistic interpretation

1. All players are rational in the sense of Savage (1954): players only use

strategies that are optimal under some probabilistic belief about the

other’s strategy choices

- and assume statistical independence between players’ choices

2. Each player knows G

But... these assumption do not imply NE in general

Assume more!



• Common knowledge (Lewis 1969, Aumann 1974) of the game and of
all players’ (Savage) rationality

- they all know G, know that all know G, know that all know that all

know G etc.

- they all know that all players are rational, that all players know that

all players are rational etc.

Still does not imply NE...

Example 2.1 (“Battle of the Sexes”)

a b
A 3, 1 0, 0
B 0, 0 1, 3

.



Example 2.2 (“Matching Pennies”)

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Example 2.3 (unique and strict NE)

L C R
T 7, 0 2, 5 0, 7
M 5, 2 3, 3 5, 2
B 0, 7 2, 5 7, 0

• Epistemic foundations of NE: Aumann and Brandenburger (1995)

• The above assumptions lead to rationalizability, not equilibrium



2.2 The mass-action interpretation

“It is unnecessary to assume that the participants in a game have full

knowledge of the total structure of the game, or the ability and inclination

to go through any complex reasoning processes. But the participants are

supposed to accumulate empirical information on the relative advantages

of the various pure strategies at their disposal.

To be more detailed, we assume that there is a population (in the sense of

statistics) of participants for each position of the game. Let us also assume

that the ’average playing’ of the game involves n participants selected at

random from the n populations, and that there is a stable average frequency

with which each pure strategy is employed by the ’average member’ of the

appropriate population.

Since there is to be no collaboration between individuals playing in different

positions of the game, the probability that a particular n-tuple of pure



strategies will be employed in playing of the game should be the product

of the probabilities indicating the chance of each of the n pure strategies

to be employed in a random playing.

... Thus the assumptions we made in this ’mass action’ interpretation led to

the conclusion that the mixed strategies representing the average behavior

in each of the populations form an equilibrium point.” (John Nash’s PhD.

thesis)

But... these assumption do not imply NE in general!

• Evolutionary game theory (replication of behaviors in large populations)



3 Next lecture

Two topics also the next two lectures (Monday and Wednesday next week):

1. Finite extensive- and normal-form games (Lecture notes Chapter 3)

2. Solution concepts for finite normal-form games (Lecture notes Chapter

4 and/or EGT book Chapter 1)

THE END


