1 Extensive-form games

Definition 1.1 A finite extensive-form game is a 9-tuple

\[\Gamma = (N, A, \psi, \mathcal{P}, \mathcal{I}, C, p, r, v) \] where:

1. \(N = \{1, \ldots, n\} \) the set of personal players

2. \(A \) the set of nodes

\[a_0 \in A \] the root
3. $\psi : A \setminus \{a_0\} \rightarrow A$ the \textit{predecessor function}

notation: $a < a' \iff a = \psi(a')$

$A_\omega \subset A$ the \textit{terminal} nodes

T the set of \textit{plays} τ

4. $P = \{P_0, P_1, \ldots, P_n\}$ the \textit{player partitioning} of non-terminal nodes, allowing for empty sets

(If $P_i = \emptyset$ then i is called a \textit{null player}.)

5. $I = \bigcup_{i \in N} I_i$, where each I_i is the \textit{information partitioning} of $P_i \subset A$ into (non-empty) \textit{information sets} $I \in I_i$. Two regularity conditions:

(5a) Each play intersects every information set at most once

(5b) All nodes in an info set have the same number of outgoing branches
6. \(C = \{C_I : I \in \mathcal{I}\} \), where each \(C_I \) is the choice partitioning of outgoing branches at \(I \)

 notation: \(c < a \)

7. \(p \) the probabilities of “nature’s” random moves at nodes \(a \in P_0 \)

8. \(r : T \to D \) the result function (or outcome function), assigning material consequences to plays

9. \(v : T \to \mathbb{R}^n \) the combined Bernoulli function, assigning Bernoulli values, \(v_i(\tau) \in \mathbb{R} \), to each play \(\tau \) and player \(i \).

 These values represent how “good” or “bad” the plays are for the player, and may depend on all details of \(N, A, \psi, \mathcal{P}, \mathcal{I}, C, p, r \).

 • Note that here: \(T \leftrightarrow A_\omega \) (but not in infinite-horizon games)
Distinction between:

- $\Phi = (N, A, \psi, \mathcal{P}, \mathcal{I}, \mathcal{C}, p)$ the game form

- $\Psi = (N, A, \psi, \mathcal{P}, \mathcal{I}, \mathcal{C}, p, r)$ the game protocol (or mechanism)

- $\Gamma = (N, A, \psi, \mathcal{P}, \mathcal{I}, \mathcal{C}, p, r, v)$ the game

Later on, when we work with solution concepts, the function r will not matter (explicitly), only the function v.
Is this an extensive form?
What about this one?
2 Game theory is not consequentialistic

- Preferences over plays \(\neq \) preferences over results (consequences)

Example 2.1 Let the numbers be monetary gains (say euros):
3 Subgames

- The follower set

\[F(a) = \{ a' \in A : a \leq a' \} \]

- Subroots are nodes \(a \) for which:

\[F(a) \cap I \neq \emptyset \Rightarrow I \subset F(a). \]

Definition 3.1 A subgame of \(\Gamma \) is the tree starting at a subroot \(a \), endowed with the same partitionings etc. and denoted \(\Gamma_a \) (in particular, \(\Gamma_{a_0} = \Gamma \) is a subgame)
4 Strategies, realization probabilities and payoff functions

4.1 Pure strategies

Definition 4.1 A pure strategy s_i for a player i is a function that assigns a choice $c \in C_I$ to each information set $I \in I_i$ of the player.

- Note that a pure strategy is more than what people usually think...

- Pure-strategy profiles $s = (s_1, ..., s_n) \in S = \times_{i \in N}S_i$
• Realization probabilities for plays $\tau \in T$: $\rho(\tau, s)$ is the probability for τ under $s \in S$

Definition 4.2 *The pure-strategy payoff function* $\pi_i : S \rightarrow \mathbb{R}$ for player i is defined by

$$\pi_i(s) = \sum_{\tau \in T} \rho(\tau, s) v_i(\tau)$$
4.2 Mixed strategies

Definition 4.3 A mixed strategy x_i for player i is a probability distribution over i's set of pure strategies.

- As if each player randomizes before starting to play
- Notation: $x_i \in X_i = \Delta(S_i)$

- Mixed-strategy profiles

$$x = (x_1, ..., x_n) \in X = \boxtimes(S) = \times_i \Delta(S_i)$$

- Realization probabilities:

$$\tilde{\rho}(\tau, x) = \sum_{s \in S} \left[\prod_{j \in N} x_j(s_j) \right] \rho(\tau, s)$$
Definition 4.4 *The mixed-strategy payoff function* $\tilde{\pi}_i : \square(S) \to \mathbb{R}$ *for player* i *is defined by*

$$\tilde{\pi}_i(x) = \sum_{\tau \in T} \tilde{\rho}(\tau, x) v_i(\tau)$$
• Polynomial functions

Example 4.1

\[
\left\{
\begin{align*}
\tilde{\pi}_1 (x) &= x_{11} + 2x_{12}x_{21} \\
\tilde{\pi}_2 (x) &= 3x_{11} + 2x_{12}x_{21}
\end{align*}
\right.
\]
4.3 Behavior strategies

- *Local strategies*: statistically independent randomizations over choice sets,

\[y_{iI} \in Y_{iI} = \Delta(C_I) \]

Definition 4.5 A behavior strategy \(y_i \) for player \(i \) is a function that assigns a local strategy to each information set \(I \in \mathcal{I}_i \) of the player

- As if players randomize as play proceeds

- Notation: \(y_i \in Y_i = \times_{I \in \mathcal{I}_i} Y_{iI} \)

- Behavior-strategy profiles: \(y \in Y = \times_{i \in N} Y_i \)
• Realization probabilities: \(\hat{\rho}(\tau, y) = \) the product of all choice probabilities along \(\tau \)

Definition 4.6 The behavior-strategy payoff function \(\hat{\pi}_i \) of player \(i \) is defined by

\[
\hat{\pi}_i (y) = \sum_{\tau \in T} \hat{\rho}(\tau, y) v_i(\tau)
\]
4.4 Outcome and path

- Terminology for pure, mixed and behavior strategy profiles:

Definition 4.7 Outcome of strategy profile = induced probability distribution over plays

Definition 4.8 Path of strategy profile = the set of plays assigned positive probabilities = the support of the outcome.

- Also applied to nodes and information sets “on and off the path”.
5 Perfect recall and Kuhn’s theorem

- Mixed strategies: “global randomizations” performed at the beginning of the play of the game

- Behavior strategies: “local randomizations” performed during the course of play of the game

- Equivalence in terms of realization probabilities?
Definition 5.1 (Kuhn 1950,1953) An extensive form Φ has perfect recall if

$$c < a \Leftrightarrow c < a'$$

for each player $i \in N$, pair of information sets $I, J \in I_i$, choice $c \in C_I$ and nodes $a, a' \in J$.

- Note: An extensive form has perfect recall if each player has only one information set.

- Note: Bernoulli values and payoffs are irrelevant for this definition.

Informally:

Theorem 5.1 ("Kuhn’s Theorem") If Φ has perfect recall, then, for each mixed strategy, \exists a realization-equivalent behavior strategy.
5.1 Behavior-strategy mixtures

To state this more exactly: Consider a player \(i \) in a finite extensive form \(\Phi \).

Definition 5.2 A (behavior-strategy) mixture, \(w_i \), is a finite-support randomization over the player’s set of behavior strategies: \(w_i \in W_i \), where \(W_i \) is the set of probability vectors \(w_i = (w_i(y_i^1),...,w_i(y_i^k)) \) for some \(k \in \mathbb{N} \) and \(y_i^1,...,y_i^k \in Y_i \).

- Every behavior strategy \(y_i \in Y_i \) can be viewed as a (degenerate) behavior-strategy mixture, the mixture \(w_i \) that assigns unit probability to \(y_i \).

- Every mixed strategy \(x_i \in X_i \) can be viewed as the mixture \(w_i \) that assigns probability \(x_{ih} \in [0,1] \) to the (degenerate) behavior strategy \(y_i^h \) that assigns unit probability to the choices made under pure strategy \(h \in S_i \).
Definition 5.3 A mixture \(w'_i \in W_i \) is realization equivalent with a mixture \(w_i \in W_i \) if the realization probabilities under the profile \((w'_i, w''_i) \) are identical with those under \((w_i, w''_i) \), for all profiles \(w'' \in \times_{j=1}^n W_j \).

Theorem 5.2 (Kuhn 1950, Selten 1975) Consider a player \(i \) in a finite extensive form \(\Phi \) with perfect recall. For each behavior-strategy mixture \(w_i \in W_i \) there exists a realization-equivalent mixture \(w'_i \in W_i \) that assigns unit probability to a behavior strategy \(y_i \in Y_i \).

Rough proof sketch:

1. Consider those of \(i \)'s information sets \(I \) that are possible under \(w_i \) in the sense that \(I \) is on the path of \((w_i, w''_i) \) for some \(w'' \in \times_{j=1}^n W_j \)

2. Note that conditional probabilities across nodes in an information set \(I \in \mathcal{I}_i \) do not depend on \(i \)'s own strategy
6 Normal-form games

- A normal-form game: a triplet $G = (N, S, \pi)$ where

 N is the set of players

 $S = \times_{i \in N} S_i$ the set of strategy profiles $s = (s_i)_{i \in N}$, S_i the strategy set of player i

 $\pi : S \rightarrow \mathbb{R}^n$ is the combined payoff function, $\pi_i(s) \in \mathbb{R}$ the payoff to player i under s
Example 6.1 A firm offering a wage $w \in W = [0, 100]$ to a worker, who can accept or reject the offer. If accept ($y = 1$), then $v_1 = 100 - w$ (profit) and $v_2 = w$ (utility). If reject ($y = 0$), then $v_1 = v_2 = 0$. The normal form:

$S_1 = W = [0, 100]$

$S_2 = \{0, 1\}^W$; the set of functions $f : W \rightarrow \{0, 1\}$

$\pi_1 (w, f) = (100 - w) \cdot f (w)$

$\pi_2 (w, f) = w \cdot f (w)$
7 Five NF games associated with each EF game

- G is called finite if both N and S are finite

- Five normal form for a given EF game Γ:
 1. The pure-strategy normal form $G = (N, S, \pi)$
 2. The mixed-strategy normal form $\tilde{G} = (N, X, \tilde{\pi})$
 3. The behavior-strategy normal form $\hat{G} = (N, Y, \hat{\pi})$
 4. The quasi-reduced normal form
 5. The reduced normal form
Example 7.1

Game 9

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>AF</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>BE</td>
<td>1,2</td>
<td>3,2</td>
</tr>
<tr>
<td>BF</td>
<td>1,2</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Quasi-reduced (and reduced):

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>BE</td>
<td>1,2</td>
<td>3,2</td>
</tr>
<tr>
<td>BF</td>
<td>1,2</td>
<td>0,0</td>
</tr>
</tbody>
</table>
8 Thompson’s transformations

- Thompson (1952) studied four “strategically inessential” transformations of finite extensive-form games (see also Kohlberg and Mertens, 1986).

- Thompson showed that by successive application of these transformations, any finite extensive-form game can be rendered on the form of a simultaneous-move game.

- However, one of these transformations (called inflate-deflate) may result in a game without perfect recall.

- Elmes and Reny (1994) proved that one can dispense with that transformation if one of the other transformations is slightly modified.
• The three transformations are “add”, “coalesce” and “interchange”

1. “Add”, consists in adding a node to a player’s information set in such a way that the player’s choice will not affect any player’s payoff in case play would reach the added node. [Reconsider the entry-deterrence game in lecture 1]

2. “Coalesce” brings together two consecutive decision nodes, each being a singleton information set and belonging to the same player. [Example in class]

3. “Interchange” changes the order of moves between two players who are not informed of each others’ moves. [Reconsider Game 2 in lecture 1]
Figure 1:

Theorem 8.1 (Elmes and Reny) If Γ and Γ' are extensive-form games with perfect recall and have the same quasi-reduced normal form, then there exists a finite sequence of games, $\Gamma_1, \ldots, \Gamma_k$, each with perfect recall, such that (a) $\Gamma_1 = \Gamma$ and $\Gamma_k = \Gamma'$ and (b) consecutive games in the sequence differ only by one of the transformations “add”, “coalesce” or “interchange”.

- Hence, if we, as analysts, deem the three transformations “strategically inessential” then we will prefer solution concepts that are invariant under these transformations, that is, that (by the above theorem) depend only on the quasi-reduced normal form. [See discussion in Kohlberg and Mertens, 1986]
9 Solution concepts

Now we are in a position to define and analyze different solution concepts for games

- Solution concepts for extensive-form games (complicated math)

- Solution concepts for normal-form concepts (easier math)

- Interpretations of solutions: (a) rationalistic, (b) evolutionary

Next topic:

Solution concepts for finite normal-form games.