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• Rationalistic and evolutionary paradigms

• The ”as if” approach: Alchian, Friedman

• Evolutionary theorizing: De Mandeville, Malthus, Darwin, Maynard
Smith

• Darwin: exogenous environment

- “perfect competition”

• Maynard Smith: endogenous environment

- “imperfect competition”

• Nash’s “mass action interpretation”



• Evolutionary process =

= mutation process + selection process

• Richard Dawkins:

- “the selfish gene”

- “replicator”

- “meme”

• The unit of selection: strategies

• Evolutionary stability: focus on robustness to mutations

• Replicator dynamics: focus on selection and let dynamic stability take
care of mutations



1 Definition and preliminaries

• ESS = evolutionarily stable strategy (Maynard Smith and Price (1972),
Maynard Smith (1973)

- “robustness against behavioral mutations”

- “a strategy that will not ‘let go’, once it has become the ‘convention’

in a population



Heuristically

1. A population of individuals who are recurrently and randomly matched
in pairs to play a symmetric two-player game

2. Initially, all individuals always use the same pure or mixed strategy, x

3. Suddenly, a small population share switch to another pure or mixed
strategy, y

4. If the incumbents (those who play x) on average do better – in terms
of their average payoff – than the mutants (those who play y), then
x is said to be evolutionarily stable against y

5. x is evolutionarily stable if it is evolutionarily stable against all muta-
tions y 6= x



Domain of analysis

• Symmetric finite two-player games in normal form

Definition 1.1 A game G = (N,S, π) is a finite and symmetric two-player

game if N = {1, 2}, S1 = S2 = S = {1, ...,m} and π2(h, k) = π1(k, h)

for all h, k ∈ S

• Payoff bimatrix (ahk, bhk)

• Symmetry ⇔ B = AT

• Write ∆ for ∆ (S), the set of mixed strategies:

∆ = {x ∈ Rm+ :
X
i∈S

xi = 1}



• Write the payoff to any strategy x ∈ ∆ when used against any strategy

y ∈ ∆ (irrespective of player roles):

u(x, y) = x ·Ay

• While Prisoner Dilemma games are symmetric, the Matching-Pennies
game is not

Example 1.1 (PD) Here B = AT :

C D
C 3, 3 0, 4
D 4, 0 2, 2

A =

Ã
3 0
4 2

!
B =

Ã
3 4
0 2

!

Example 1.2 (MP) Here B 6= AT :

H T
H 1,−1 −1, 1
T −1, 1 1,−1

A =

Ã
1 −1
−1 1

!
B =

Ã
−1 1
1 −1

!



Example 1.3 (CO) Here B = AT = A :

L R
L 2, 2 0, 0
R 0, 0 1, 1

A = B =

Ã
2 0
0 1

!

a doubly symmetric game (AT = A)



• Best replies to x ∈ ∆:

β∗(x) = {x∗ ∈ ∆ : u(x∗, x) ≥ u
³
x0, x

´
∀x0 ∈ ∆}

• This defines a correspondence from ∆ to itself: β∗ : ∆⇒ ∆

• Let

∆NE = {x ∈ ∆ : x ∈ β∗ (x)}

• Note x ∈ ∆NE ⇔ (x, x) ∈ ¤NE a symmetric NE

Proposition 1.1 ∆NE 6= ∅.

Proof: Apply Kakutani’s Fixed-Point Theorem to the correspondence β∗.



• Note: The set∆NE is compact and consists of finitely many connected

and closed subsets (∆NE = ¤NE ∩D)

• We are now in a position to define evolutionary stability:

Definition 1.2 x ∈ ∆ is an evolutionarily stable strategy (ESS) if for every

strategy y 6= x ∃ ε̄ ∈ (0, 1) such that for all ε ∈ (0, ε̄):

u [x, εy + (1− ε)x] > u [y, εy + (1− ε)x] . (1)

• Population mixture:

p = εy + (1− ε)x ∈ ∆

• Let ∆ESS ⊂ ∆ denote the set of ESSs



• Note that an ESS has to be a best reply to itself: if x ∈ ∆ESS then

u(y, x) ≤ u(x, x) ∀y ∈ ∆

• Hence ∆ESS ⊂ ∆NE

• Note also that an ESS has to be a better reply to its alternative best
replies than they are to themselves: if x ∈ ∆ESS, y ∈ β∗ (x) and
y 6= x, then u (x, y) > u (y, y)



Proposition 1.2 x ∈ ∆ESS if and only if for all y 6= x:

u(y, x) ≤ u(x, x) (2)

u(y, x) = u(x, x)⇒ u(y, y) < u(x, y) (3)

• Note that some games have no ESS. Example?



Example 1.4 (PD)

C D
C 3, 3 0, 4
D 4, 0 2, 2

∆ESS = ∆NE = {D}



Example 1.5 (CO)

A B
A 2, 2 0, 0
B 0, 0 1, 1

∆NE =
½
A,B,

1

3
A+

2

3
B
¾

∆ESS = {A,B}

We finally got rid of the mixed NE!



Example 1.6 (3 by 3) Recall the initial example with a unique and strict

NE, where all strategies were seen to be rationalizable:

L C R
T 7, 0 2, 5 0, 7
M 5, 2 3, 3 5, 2
B 0, 7 2, 5 7, 0

This game is not symmetric. However, we obtain a symmetric game by

letting “nature” first choose who will be the row player and the column

player, respectively, with equal probability for both alternatives. In this

new, larger and symmetric game, each player has nine pure strategies,

S = {TL, TC, ..., BC,BR}, all rationalizable. The unique NE is for both
to playMC. SinceMC is the unique best reply to itself, this is the unique

ESS. Hence, in this example, evolutionary stability picks a unique strategy

while rationalizability permits all.



Example 1.7 (RSP) The rock-scissors-paper game: B = AT and

A =

⎛⎜⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎟⎠



2 Maynard Smith’s and Price’s original example

1. Each player has two pure strategies; “hawk”, H, or “dove”, D (origi-

nally, “mouse”)

2. H obtains payoff v > 0 when played against D, and D then obtains 0.

3. If both play H: each player has an equal chance of winning v, and the

cost of losing a fight is c > v

- hence, the expected payoff to strategy H against itself is (v − c)/2

4. If both play D: they split even and each gets payoff v/2.



5. The resulting payoff matrices:

A =

Ã
v/2− c/2 v

0 v/2

!
and B = AT

6. The game has two asymmetric pure NE: (H,D) and (D,H)

7. It also has one symmetric equilibrium: both play H with probability

v/c

8. Let

x∗ =
µ
v

c
, 1− v

c

¶

and note that ∆NE = {x∗}

9. Since ∆ESS ⊂ ∆NE it only remains to see if x∗ is an ESS



10. Since x∗ ∈ ∆NE ∩ int (∆), all y ∈ ∆ are alternative best replies

11. Hence sufficient to show

u(y, y) < u(x∗, y) ∀y 6= x∗

Two polynomials in one variable y...



12. Example: v = 4 and c = 6:

H D
H (−1,−1) (4, 0)
D (0, 4) (2, 2)

∆NE =
½
2

3
H +

1

3
D
¾

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.2

-0.1

0.0

0.1

0.2

xH



3 Some properties of ESS

3.1 Finiteness

Proposition 3.1 (Haigh, 1975) The set ∆ESS is finite.

Proof idea: Non-overlapping supports.



3.2 Relations to non-cooperative solutions

• x ∈ ∆ESS ⇒ x undominated

• x ∈ ∆ESS ⇒ (x, x) ∈ ¤PE

• x ∈ ∆ESS ⇒ (x, x) ∈ ¤PR (proper)



3.3 Uniform invasion barriers

• The definition of ESS requires that, for each potential mutant strategy
y 6= x, ∃ “invasion barrier” ε̄y > 0

• ∃ a uniform invasion barrier ε̄ > 0?

• Important question, since real populations are finite, and thus we need
ε̄y ≥ 1/N ∀y 6= x

Definition 3.1 x ∈ ∆ has a uniform invasion barrier if there is some ε̄ > 0

such that inequality (1) holds for all strategies y 6= x and all ε ∈ (0, ε̄).

Proposition 3.2 x ∈ ∆ESS iff x has a uniform invasion barrier.



3.4 Local superiority

• An interior ESS x earns a higher payoff against all y 6= x than these

earn against themselves

• A form of “global superiority”

• What about “local superiority”?

Definition 3.2 x ∈ ∆ is locally superior if it has a nbd A s.t. u(x, y) >

u(y, y) ∀y 6= x, y ∈ A.

Proposition 3.3 x ∈ ∆ESS ⇔ x is locally superior.



4 Neutral stability and evolutionarily stable sets

Definition 4.1 x ∈ ∆ is a neutrally stable strategy (NSS) if for every

strategy y ∈ ∆ ∃ ε̄ ∈ (0, 1) such that for all ε ∈ (0, ε̄):

u [x, εy + (1− ε)x] ≥ u [y, εy + (1− ε)x] .

• Reconsider the rock-scissors-paper game

• ∆ESS ⊂ ∆NSS ⊂ ∆NE

• There are games with no NSS



• Set-wise evolutionary stability:

Definition 4.2 (Thomas, 1985) A non-empty and closed set X ⊂ ∆NE is

an evolutionarily stable set (an ES set) if there for each x ∈ X exists some

δ > 0 such u(x, y) ≥ u(y, y) for all y ∈ β∗(x) within distance δ from x,

with strict inequality if y /∈ X.

• All strategies x in an ES set X are NSS

• If x ∈ ∆ESS, then X = {x} is an ES set

• More generally:

(i) X ⊂ ∆ESS ⇒ X is an ES set

(ii) X,X 0 ES sets ⇒ X ∪X 0is an ES set



• There are games with no ES set (for example rock-scissors-paper)

• There are games with interesting ES sets (for example cheap-talk

games)



5 Equilibrium-evolutionary stable sets

Definition 5.1 (Swinkels, 1993) A setX ⊂ ¤NE is equilibrium evolution-

arily stable (EES) if it is minimal with respect to the following property: X

is a non-empty and closed subset of ∆NE for which ∃ ε̄ ∈ (0, 1) such that if
x ∈ X, y ∈ ∆, ε ∈ (0, ε̄) and y ∈ β̃ [εy + (1− ε)x], then εy+(1−ε)x ∈ X.

Proposition 5.1 (Swinkels, 1993) Every EES set X ⊂ ∆NE is a compo-

nent of ∆NE.

Proposition 5.2 Every ES set contains some EES set. Any connected ES

set is an EES set.



Example 5.1 Entry to a prisoner’s dilemma, with veto right (set v = 5):

2
2

2
2

2
2

1

2

4
4

0
v

1
1

v
0

1

2



Next lecture

-the replicator and other selection dynamics

-in symmetric two-player games and in arbitrary finite games

- chapter 8 in lecture notes, chapters 3 and 5 in book

THE END


