THE REPLICATOR DYNAMIC

Jörgen Weibull

March 4, 2010

Two remaining questions from last lecture:

- 1. Symmetric version of asymmetric 3×3 example?
- 2. An ESS that is non-robust against multiple mutations?

Recall that:

- Evolutionary process = mutation process + selection process
- *Evolutionary stability*: focus on robustness to mutations, selection dynamics implicit
- *Replicator dynamics:* focus on selection, robustness to mutations by way of dynamic stability

[Today's material is covered in Chapters 3 and 5 in Weibull (1995). See also lecture notes.]

1 The replicator dynamic

• Domain of analysis the same as for ESS: finite and symmetric twoplayer games

Heuristically:

- 1. A population of individuals who are recurrently and randomly matched in pairs to play the game
- 2. Individuals use only *pure strategies* (like in Nash's mass-action interpretation)
- 3. A mixed strategy is now interpreted as a *population state*, a vector of populations shares

- 4. Population shares change, depending on the *current average payoff* to each pure strategy
- 5. The changes are described by a *system of ordinary differential equations*

Formally:

A game $G = (N, S, \pi)$ with $N = \{1, 2\}$, $S_1 = S_2 = S = \{1, ..., m\}$ and $\pi_2(h, k) = \pi_1(k, h)$ for all $h, k \in S$

- Payoff bimatrix (A, B) with elements (a_{hk}, b_{hk})
- Symmetry: $B = A^T$
- The state space:

$$\Delta = \{ x \in \mathbb{R}^m_+ : \sum_{h \in S} x_h = 1 \}$$

• The average payoff to any pure strategy h in any population state $x \in \Delta$:

$$u(e^h, x) = e^h \cdot Ax$$

• The *replicator dynamic* (Taylor and Jonker, 1978):

$$\dot{x}_{h}(t) = \left(u\left[e^{h}, x(t)\right] - u\left[x(t), x(t)\right]\right) \cdot x_{h}(t) \qquad \forall h \in S, t \in \mathbb{R}$$

1.1 Deriving the replicator dynamic

- In a finite population, let $N_h(t) \ge 0$ be the number of individuals who currently use pure strategy $h \in S$
- Let $N(t) = \sum_{h \in S} N_h(t) > 0$ be the total population
- Population state: $x(t) = (x_1(t), ..., x_m(t))$, where $x_h(t) = N_h(t)/N(t)$
- Thus $x(t) \in \Delta$, a mixed strategy
- Birth-death process:

$$\dot{N}_h = \left[\beta + u(e^h, x) - \delta\right] N_h \qquad \forall h \in S$$

 \Rightarrow the replicator dynamic

Proof: take time derivative of the identity

$$N(t)x_h(t) = N_h(t) \qquad \forall t \in \mathbb{R}$$

• Growth rate of (positive) population share of "h-strategists" = the excess payoff to pure strategy h:

$$\frac{\dot{x}_h}{x_h} = u(e^h, x) - u(x, x)$$

- Better-than-average strategies grow
- Best replies have the highest growth rate

1.2 Invariance under payoff transformations

- 1. Replicator dynamic *orbits* are invariant under positive affine transformations of payoffs (the speed along the orbits depend on the scaling parameter)
- 2. Replicator dynamics *orbits* and *trajectories* are invariant under local payoff shifts (addition of subtraction of any constant to a column of A)

2 Systems of ODEs - a reminder

1. System of autonomous, first-order ordinary differential equations (ODEs):

$$\dot{x}(t) = f[x(t)]$$

where $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^m$ and

$$\dot{x} = (\dot{x}_1, ..., \dot{x}_m) = \frac{dx}{dt} = (\frac{dx_1}{dt}, ..., \frac{dx_m}{dt})$$

- 2. x is called a *state*, X the *state space* and f the *vector field*
- 3. A (local) solution through a point $x^o \in X$ to (??) is a function $\xi(\cdot, x^o)$: $T \to X$, where T is an open interval containing t = 0, such that $\xi(0, x^o) = x^o$, and

$$\frac{d}{dt}\xi(t,x^o) = f\left[\xi(t,x^o)\right] \qquad \forall t \in T$$

The solution is called *global* if $T = \mathbb{R}$

- 4. The Picard-Lindelöf theorem: If f is Lipschitz continuous, then (??) has a unique local solution $\xi(\cdot, x^o) : T \to X$ through each point $x^o \in X$.
- 5. Extension of time domain: Suppose $C \subset X$ is compact and such that

 $x^{o} \in C \implies \exists T(x^{o}) \text{ open s.t. } \xi(t, x^{o}) \in C \forall t \in T(x^{o})$

Then one can prove that \exists unique global solution $\xi(\cdot, x^o) : \mathbb{R} \to C$ through each $x^o \in C$ [Hale, 1969]

6. The induced global mapping $\xi : \mathbb{R} \times C \to C$ is continuous and satisfies

$$\begin{cases} \xi(\mathbf{0}, x) = x & \forall x \in C \\ \xi[t, \xi(s, x)] = \xi(t + s, x) & \forall x \in C, \ \forall s, t \in \mathbb{R} \end{cases}$$

7. The trajectory $\tau(x^o)$ through $x^o \in C$ is the graph of the solution through x^o :

$$\tau(x^o) = \{(t, x) \in \mathbb{R} \times C : x = \xi(t, x^o)\}$$

8. The orbit $\gamma(x^o)$ through x^o is the range of the solution through x^o :

$$\gamma(x^{o}) = \{x \in C : x = \xi(t, x^{o}) \text{ for some } t \in \mathbb{R}\}$$

- 9. A subset $A \subset C$ is *invariant* if $\gamma(x^o) \subset A$ for all $x^o \in A$.
- 10. If $A \subset C$ is invariant, then so is $\overline{A} \subset C$, $B = C \cap \sim A$, $int(A) \subset C$ and $bd(A) \subset C$
- 11. A stationary (or equilibrium) state under ξ is a state $x \in C$ such that $\xi(t, x) = x$ for all $t \in \mathbb{R}$

- 12. The Picard-Lindelöf Theorem \Rightarrow unique solution through every stationary state, so if you are not in equilibrium, you will never be....
- 13. Proposition: If $\lim_{t\to+\infty} \xi(t,x) = x^*$, then x^* is stationary
- 14. The forward orbit $\gamma^+(x^o)$ through x^o :

$$\gamma^+(x^o) = \{x \in C : x = \xi(t, x^o) \text{ for some } t \ge 0\}$$

- 15. A subset $A \subset C$ is forward invariant if $\gamma^+(x^o) \subset A$ for all $x^o \in A$
- 16. A state $x \in C$ is (Lyapunov) stable if every nbd B of x contains a nbd B^o of x s.t.

$$x^{o} \in B^{o} \cap C \Rightarrow \xi(t, x^{o}) \in B \ \forall t \ge 0$$

17. A state $x \in C$ is *(locally) asymptotically stable* if it is stable and \exists a nbd A of x s.t.

$$\lim_{t \to +\infty} \xi(t, x^o) = x \quad \forall x^o \in A \cap C$$

3 Results for the replicator dynamic

Proposition 3.1 Strictly dominated pure strategies are asymptotically wiped out from the population: If $k \in S$ is strictly dominated by some strategy $y \in \Delta$, then

$$\lim_{t \to +\infty} \xi_h(t, x^o) = 0 \quad \forall x^o \in int (\Delta)$$

Proof:

1. Suppose $k \in S$ is strictly dominated by $y \in \Delta$

2. Then

$$\min_{x \in \Delta} \left[u(y, x) - u(e^k, x) \right] = \varepsilon > 0$$

3. Let $V : int(\Delta) \rightarrow \mathbb{R}$ be defined by

$$V(x) = \sum_{h \in S} y_h \ln(x_h) - \ln(x_k)$$

4. Then V increases along the replicator solution trajectories:

$$\begin{split} \dot{V}(x) &= \sum_{h \in S} \frac{\partial V(x)}{\partial x_h} \dot{x}_h = \sum_{h \in S} \frac{y_h \dot{x}_h}{x_h} - \frac{\dot{x}_k}{x_k} \\ &= \sum_{h \in S} y_h \cdot \left[u(e^h, x) - u(x, x) \right] - \left[u(e^k, x) - u(x, x) \right] \\ &= u(y, x) - u(e^k, x) \ge \varepsilon \quad \forall x \in \Delta \end{split}$$

5. Hence, $V(x) \rightarrow +\infty$ and thus $x_k \rightarrow 0$

- The result can easily be generalized to any pure strategy that is *itera-tively* strictly dominated
- Since those strategies are not rationalizable:

Proposition 3.2 If $h \in S$ is not rationalizable, then it is asymptotically wiped out, if initially all pure strategies are present in the population:

$$\lim_{t \to +\infty} \xi_h(t, x^o) = 0 \quad \forall x^o \in int(\Delta)$$

- In the limit, it is as if CK[game+rationality] would hold in the population
- Note that the two propositions are true irrespective of whether the solution trajectory converge or not

• If a solution trajectory does converge, and all pure strategies are initially present, we obtain more:

Proposition 3.3 If $x^o \in int(\Delta)$ and $\lim_{t\to+\infty} \xi(t, x^o) = x$: $x \in \Delta^{NE}$.

• We obtained NE without any rationality or knowledge assumption!

Proof of proposition:

1. Suppose
$$x^o \in int(\Delta)$$
 and $\xi(t, x^o)_{t \to +\infty} \to x$ but $x \notin \Delta^{NE}$

2.
$$\exists h \in S$$
 such that $u(e^h, x) - u(x, x) = \varepsilon > 0$

- 3. Since $\xi(t, x^o) \to x$ and u is continuous: $\exists T > 0$ such that $u\left[e^h, \xi(t, x^o)\right] - u\left[\xi(t, x^o), \xi(t, x^o)\right] > \frac{\varepsilon}{2} \quad \forall t \ge T$
- 4. By the replicator dynamic:

$$\dot{x}_{h} = \left[u\left(e^{h}, x\right) - u\left(x, x\right)\right]x_{h} > \frac{\varepsilon}{2} \cdot x_{h} \quad \forall t \ge T$$

so
$$\xi_h(t, x^o) \to +\infty$$
, a contradiction to $\xi(t, x^o) \to x$

- Note that every $x \in \Delta^{NE}$ is *stationary* in the replicator dynamic
- However, not every $x \in \Delta^{NE}$ is dynamically stable. But:

Proposition 3.4 If $x \in \Delta$ is Lyapunov stable, then $x \in \Delta^{NE}$.

Proof sketch:

- 1. Suppose that x^* is stationary in the replicator dynamic, but $x^* \notin \Delta^{NE}$
- 2. Then all pure strategies in the support of x^* earn the same suboptimal payoff against x^*

3. Thus
$$\exists h \in S$$
 such that $x_h^* = 0$ and $u(e^h, x^*) - u(x^*, x^*) = \varepsilon > 0$

4.
$$\exists \ \delta > 0 \text{ s.t. } \|x - x^*\| < \delta \Rightarrow u(e^h, x) - u(x, x) > \varepsilon/2$$

5. This defines a nbd B of x^* , and $||x - x^*|| < \delta/2$ defines a sub-nbd $B_o \subset B$

6. For all $x \in B_o$: $\dot{x}_h > (\varepsilon/2) x_h$, contradicting $\xi_h(t, x^o) \to 0$

Proposition 3.5 If x is asymptotically stable, then $x \in \Delta^{NE}$ is undominated.

• We obtained PE without any bounded rationality assumption!

Proposition 3.6 If $x \in \Delta^{ESS}$, then x is asymptotically stable. The converse holds for 2×2 games, but not generally for larger games.

Proof sketch:

1. Suppose $x \in \Delta^{ESS}$

2. Let $S(x) \subset S$ be its support and let $\Delta(x) = \{y \in \Delta : y_h > 0 \ \forall h \in S(x)\}$

3. Define
$$V : \Delta(x) \to \mathbb{R}$$
 by

$$V\left(y
ight)=\sum_{h\in S\left(x
ight)}x_{h}\ln y_{h}$$

and note that

$$rg\max_{y\in {f \Delta}(x)}V\left(y
ight)=\{x\}$$

4. Along replicator solution trajectories:

$$\dot{V}(y) = \sum_{h \in S} x_h \dot{y}_h / y_h = \sum_{h \in S} x_h \cdot \left[u(e^h, y) - u(y, y) \right]$$
$$= u(x, y) - u(y, y)$$

5. $x \in \Delta^{ESS} \Rightarrow x$ locally superior on a nbd B of x, so $\dot{V}(y) > 0 \ \forall y \in B$

6. Also $B \cap \Delta(x)$ is a nbd of x, and $\lim_{t \to +\infty} \xi(t, y) = x \ \forall y \in B \cap \Delta(x)$

• Counter-example in class: An asymptotically stable $x \notin \Delta^{ESS}$

Proposition 3.7 If $x \in \Delta^{NSS}$, then x is Lyapunov stable.

Proof (surprisingly) hard! [Bomze and Weibull, 1995]

4 Examples

Example 4.1 (PD) Prisoner's dilemma game

 $\begin{array}{ccc} C & D \\ C & {\bf 3}, {\bf 3} & {\bf 0}, {\bf 4} \\ D & {\bf 4}, {\bf 0} & {\bf 2}, {\bf 2} \end{array}$

 $\Delta^{ESS} = \Delta^{NE} = \{D\}$

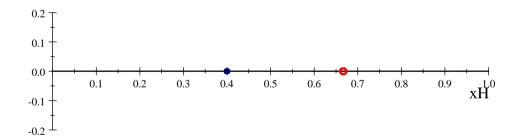
Example 4.2 (CO) Coordination game

$$\Delta^{NE} = \left\{ A, B, \frac{1}{3}A + \frac{2}{3}B \right\}, \ \Delta^{ESS} = \{A, B\}$$

Note history dependence!

Example 4.3 *Hawk-dove game*

$$A = \left(\begin{array}{cc} -1 & 4 \\ 0 & 2 \end{array}\right) \sim \left(\begin{array}{cc} 0 & 2 \\ 1 & 0 \end{array}\right)$$



Example 4.4 (RSP) The rock-scissors-paper game

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

All solution trajectories, starting from any interior $x^o \neq x^*$, are periodic, circling around x^* . Verify that the solution orbits are of the form $x_1x_2x_3 = c$, for constants $c \in [0, 1]$.

5 Multi-population dynamics

• Domain: arbitrary finite games in normal form, $G = (N, S, \pi)$, with mixed-strategy extensions, $\tilde{G} = (N, \Box(S), \tilde{\pi})$

5.1 Generalizing the replicator dynamic

- A population for each player role $i \in N$
- A mixed-strategy profile x = (x₁,...,x_n) ∈ □ viewed as a population state
- The (Taylor, 1979) multi-population replicator dynamic:

 *x*_{ih} = [π_i(e^h_i, x_{-i}) π_i(x)] x_{ih} ∀i ∈ N, h ∈ S_i, x ∈ □
 (time argument t suppressed)
- The vector field is still Lipschitz continuous
- The state space is still compact

- \exists ! global solution $\xi(\cdot, x^o) : \mathbb{R} \to \Box$ through any $x^o \in \Box$ $\xi(t, x^o)$ is the state at time $t \in \mathbb{R}$, given the initial state $x^o \in \Box$ at t = 0
- Each of \Box , $int(\Box)$ and $\partial \Box$ are invariant in this dynamic
- Set of *stationary states*:

$$\Box^{o} = \left\{ x \in \Box : \tilde{\pi}_{i}(e_{i}^{h}, x_{-i}) = \tilde{\pi}_{i}(x) \quad \forall i \in N, \ h \in \operatorname{supp}(x_{i}) \right\}$$

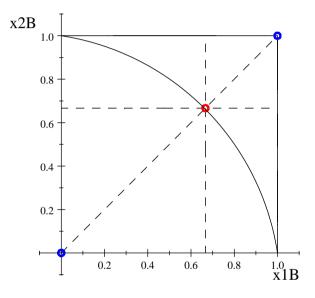
• Thus:

$$\Box^{o} \cap int(\Box) \subset \Box^{NE} \subset \Box^{o}$$

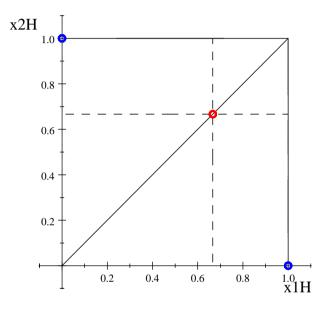
5.2 Examples

Example 5.1 (Prisoner's dilemma game) Clearly, as $t \to +\infty$:

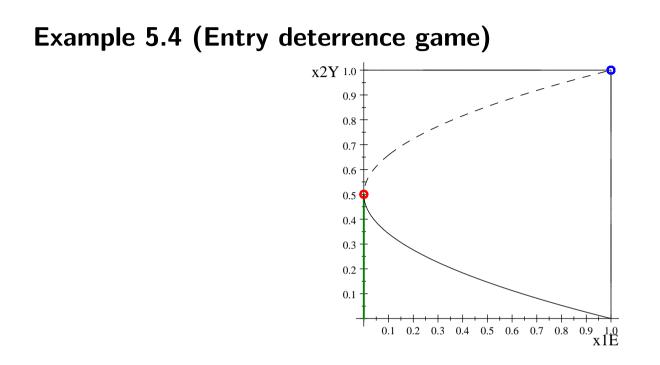
$$\xi_{iC}(t, x^{o}) \rightarrow 0$$
 for $i = 1, 2$ and any $x^{o} \in int(\Box)$



Note (a) instability of the mixed NE and (b) the history dependence



Note (a) **instability** *of the mixed NE (!) and (b) the different* **history dependence**



The population state may converge to "no entry" and each such state, with $x_{2Y} < 1/2$ is Lyapunov stable

But perpetual small population shocks (random mutations) will eventually take it to (E, Y)

Next lecture March 22: First about general deterministic selection dynamics and then about stochastic population dynamics

- Lecture notes
- Benaim and Weibull (2003)
- Young (1993, 1998)

THE END