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Two remaining questions from last lecture:

1. Symmetric version of asymmetric 3× 3 example?

2. An ESS that is non-robust against multiple mutations?



Recall that:

• Evolutionary process = mutation process + selection process

• Evolutionary stability : focus on robustness to mutations, selection dy-
namics implicit

• Replicator dynamics: focus on selection, robustness to mutations by
way of dynamic stability

[Today’s material is covered in Chapters 3 and 5 in Weibull (1995). See

also lecture notes.]



1 The replicator dynamic

• Domain of analysis the same as for ESS: finite and symmetric two-
player games

Heuristically:

1. A population of individuals who are recurrently and randomly matched

in pairs to play the game

2. Individuals use only pure strategies (like in Nash’s mass-action inter-

pretation)

3. A mixed strategy is now interpreted as a population state, a vector of

populations shares



4. Population shares change, depending on the current average payoff to

each pure strategy

5. The changes are described by a system of ordinary differential equations



Formally:

A game G = (N,S, π) with N = {1, 2}, S1 = S2 = S = {1, ...,m} and
π2(h, k) = π1(k, h) for all h, k ∈ S

• Payoff bimatrix (A,B) with elements (ahk, bhk)

• Symmetry: B = AT

• The state space:

∆ = {x ∈ Rm+ :
X
h∈S

xh = 1}

• The average payoff to any pure strategy h in any population state

x ∈ ∆:

u(eh, x) = eh ·Ax



• The replicator dynamic (Taylor and Jonker, 1978):

ẋh (t) =
³
u
h
eh, x (t)

i
− u [x (t) , x (t)]

´
· xh (t) ∀h ∈ S, t ∈ R



1.1 Deriving the replicator dynamic

• In a finite population, let Nh(t) ≥ 0 be the number of individuals who
currently use pure strategy h ∈ S

• Let N(t) = P
h∈S Nh(t) > 0 be the total population

• Population state: x(t) = (x1(t), ..., xm(t)), where xh(t) = Nh(t)/N(t)

• Thus x(t) ∈ ∆, a mixed strategy

• Birth-death process:

Ṅh =
h
β + u(eh, x)− δ

i
Nh ∀h ∈ S

⇒ the replicator dynamic



Proof: take time derivative of the identity

N(t)xh(t) = Nh(t) ∀t ∈ R

• Growth rate of (positive) population share of “h-strategists” = the

excess payoff to pure strategy h:

ẋh
xh
= u(eh, x)− u(x, x)

• Better-than-average strategies grow

• Best replies have the highest growth rate



1.2 Invariance under payoff transformations

1. Replicator dynamic orbits are invariant under positive affine transfor-

mations of payoffs (the speed along the orbits depend on the scaling

parameter)

2. Replicator dynamics orbits and trajectories are invariant under local

payoff shifts (addition of subtraction of any constant to a column of

A)



2 Systems of ODEs - a reminder

1. System of autonomous, first-order ordinary differential equations (ODEs):

ẋ (t) = f [x (t)]

where X ⊂ Rm, f : X → Rm and

ẋ = (ẋ1, .., ẋm) =
dx

dt
= (

dx1
dt

, ..,
dxm

dt
)

2. x is called a state, X the state space and f the vector field

3. A (local) solution through a point xo ∈ X to (??) is a function ξ(·, xo) :
T → X, where T is an open interval containing t = 0, such that

ξ(0, xo) = xo, and

d

dt
ξ(t, xo) = f [ξ(t, xo)] ∀t ∈ T



The solution is called global if T = R

4. The Picard-Lindelöf theorem: If f is Lipschitz continuous, then (??)

has a unique local solution ξ(·, xo) : T → X through each point

xo ∈ X.

5. Extension of time domain: Suppose C ⊂ X is compact and such that

xo ∈ C ⇒ ∃T (xo) open s.t. ξ(t, xo) ∈ C ∀t ∈ T (xo)

Then one can prove that ∃ unique global solution ξ(·, xo) : R → C

through each xo ∈ C [Hale, 1969]

6. The induced global mapping ξ : R×C → C is continuous and satisfies(
ξ(0, x) = x ∀x ∈ C
ξ [t, ξ(s, x)] = ξ(t+ s, x) ∀x ∈ C, ∀s, t ∈ R



7. The trajectory τ(xo) through xo ∈ C is the graph of the solution

through xo:

τ(xo) = {(t, x) ∈ R× C : x = ξ(t, xo)}

8. The orbit γ(xo) through xo is the range of the solution through xo:

γ(xo) = {x ∈ C : x = ξ(t, xo) for some t ∈ R}

9. A subset A ⊂ C is invariant if γ(xo) ⊂ A for all xo ∈ A.

10. If A ⊂ C is invariant, then so is Ā ⊂ C, B = C∩ ∼ A, int(A) ⊂ C

and bd(A) ⊂ C

11. A stationary (or equilibrium) state under ξ is a state x ∈ C such that

ξ(t, x) = x for all t ∈ R



12. The Picard-Lindelöf Theorem ⇒ unique solution through every sta-

tionary state, so if you are not in equilibrium, you will never be....

13. Proposition: If limt→+∞ ξ(t, x) = x∗, then x∗ is stationary

14. The forward orbit γ+(xo) through xo:

γ+(xo) = {x ∈ C : x = ξ(t, xo) for some t ≥ 0}

15. A subset A ⊂ C is forward invariant if γ+(xo) ⊂ A for all xo ∈ A

16. A state x ∈ C is (Lyapunov) stable if every nbd B of x contains a nbd

Bo of x s.t.

xo ∈ Bo ∩ C ⇒ ξ(t, xo) ∈ B ∀t ≥ 0



17. A state x ∈ C is (locally) asymptotically stable if it is stable and ∃ a
nbd A of x s.t.

lim
t→+∞

ξ(t, xo) = x ∀xo ∈ A ∩ C



3 Results for the replicator dynamic

Proposition 3.1 Strictly dominated pure strategies are asymptotically wiped

out from the population: If k ∈ S is strictly dominated by some strategy

y ∈ ∆, then

lim
t→+∞

ξh(t, x
o) = 0 ∀xo ∈ int (∆)

Proof:

1. Suppose k ∈ S is strictly dominated by y ∈ ∆

2. Then

min
x∈∆

h
u (y, x)− u(ek, x)

i
= ε > 0



3. Let V : int(∆)→ R be defined by

V (x) =
X
h∈S

yh ln(xh)− ln(xk)

4. Then V increases along the replicator solution trajectories:

V̇ (x) =
X
h∈S

∂V (x)

∂xh
ẋh =

X
h∈S

yhẋh
xh

− ẋk
xk

=
X
h∈S

yh ·
h
u(eh, x)− u (x, x)

i
−
h
u(ek, x)− u (x, x)

i
= u (y, x)− u(ek, x) ≥ ε ∀x ∈ ∆

5. Hence, V (x)→ +∞ and thus xk → 0



• The result can easily be generalized to any pure strategy that is itera-
tively strictly dominated

• Since those strategies are not rationalizable:

Proposition 3.2 If h ∈ S is not rationalizable, then it is asymptotically

wiped out, if initially all pure strategies are present in the population:

lim
t→+∞

ξh(t, x
o) = 0 ∀xo ∈ int (∆)

• In the limit, it is as if CK[game+rationality] would hold in the popu-
lation

• Note that the two propositions are true irrespective of whether the
solution trajectory converge or not



• If a solution trajectory does converge, and all pure strategies are initially
present, we obtain more:

Proposition 3.3 If xo ∈ int (∆) and limt→+∞ ξ (t, xo) = x: x ∈ ∆NE.

• We obtained NE without any rationality or knowledge assumption!

Proof of proposition:

1. Suppose xo ∈ int(∆) and ξ(t, xo)t→+∞ → x but x /∈ ∆NE

2. ∃ h ∈ S such that u(eh, x)− u (x, x) = ε > 0



3. Since ξ(t, xo)→ x and u is continuous: ∃T > 0 such that

u
h
eh, ξ (t, xo)

i
− u [ξ(t, xo), ξ(t, xo)] >

ε

2
∀t ≥ T

4. By the replicator dynamic:

ẋh =
h
u
³
eh, x

´
− u (x, x)

i
xh >

ε

2
· xh ∀t ≥ T

so ξh(t, x
o)→ +∞, a contradiction to ξ (t, xo)→ x

• Note that every x ∈ ∆NE is stationary in the replicator dynamic

• However, not every x ∈ ∆NE is dynamically stable. But:

Proposition 3.4 If x ∈ ∆ is Lyapunov stable, then x ∈ ∆NE.



Proof sketch:

1. Suppose that x∗ is stationary in the replicator dynamic, but x∗ /∈ ∆NE

2. Then all pure strategies in the support of x∗ earn the same suboptimal
payoff against x∗

3. Thus ∃ h ∈ S such that x∗h = 0 and u(e
h, x∗)− u (x∗, x∗) = ε > 0

4. ∃ δ > 0 s.t. kx− x∗k < δ ⇒ u(eh, x)− u (x, x) > ε/2

5. This defines a nbd B of x∗, and kx− x∗k < δ/2 defines a sub-nbd

Bo ⊂ B



6. For all x ∈ Bo: ẋh > (ε/2)xh, contradicting ξh(t, x
o)→ 0

Proposition 3.5 If x is asymptotically stable, then x ∈ ∆NE is undomi-

nated.

• We obtained PE without any bounded rationality assumption!

Proposition 3.6 If x ∈ ∆ESS, then x is asymptotically stable. The con-

verse holds for 2× 2 games, but not generally for larger games.

Proof sketch:

1. Suppose x ∈ ∆ESS

2. Let S (x) ⊂ S be its support and let∆ (x) = {y ∈ ∆ : yh > 0 ∀h ∈ S (x)}



3. Define V : ∆(x)→ R by

V (y) =
X

h∈S(x)
xh ln yh

and note that

arg max
y∈∆(x)

V (y) = {x}

4. Along replicator solution trajectories:

V̇ (y) =
X
h∈S

xhẏh/yh =
X
h∈S

xh ·
h
u(eh, y)− u (y, y)

i
= u(x, y)− u (y, y)

5. x ∈ ∆ESS ⇒ x locally superior on a nbd B of x, so V̇ (y) > 0 ∀y ∈ B

6. Also B∩∆(x) is a nbd of x, and limt→+∞ξ (t, y) = x ∀y ∈ B∩∆(x)



• Counter-example in class: An asymptotically stable x /∈ ∆ESS

Proposition 3.7 If x ∈ ∆NSS, then x is Lyapunov stable.

Proof (surprisingly) hard! [Bomze and Weibull, 1995]



4 Examples

Example 4.1 (PD) Prisoner’s dilemma game

C D
C 3, 3 0, 4
D 4, 0 2, 2

∆ESS = ∆NE = {D}



Example 4.2 (CO) Coordination game

A B
A 2, 2 0, 0
B 0, 0 1, 1

∆NE =
½
A,B,

1

3
A+

2

3
B
¾
, ∆ESS = {A,B}

Note history dependence!



Example 4.3 Hawk-dove game

A =

Ã
−1 4
0 2

!
∼
Ã
0 2
1 0

!
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xH



Example 4.4 (RSP) The rock-scissors-paper game

A =

⎛⎜⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎟⎠

All solution trajectories, starting from any interior xo 6= x∗, are periodic,
circling around x∗. Verify that the solution orbits are of the form x1x2x3 =

c, for constants c ∈ [0, 1].



5 Multi-population dynamics

• Domain: arbitrary finite games in normal form, G = (N,S, π), with

mixed-strategy extensions, G̃ = (N,¤ (S) , π̃)



5.1 Generalizing the replicator dynamic

• A population for each player role i ∈ N

• A mixed-strategy profile x = (x1, ..., xn) ∈ ¤ viewed as a population

state

• The (Taylor, 1979) multi-population replicator dynamic:

ẋih =
h
π̃i(e

h
i , x−i)− π̃i(x)

i
xih ∀i ∈ N,h ∈ Si, x ∈ ¤

(time argument t suppressed)

• The vector field is still Lipschitz continuous

• The state space is still compact



• ∃! global solution ξ(·, xo) : R→ ¤ through any xo ∈ ¤

ξ(t, xo) is the state at time t ∈ R, given the initial state xo ∈ ¤ at

t = 0

• Each of ¤, int (¤) and ∂¤ are invariant in this dynamic

• Set of stationary states:

¤o =
n
x ∈ ¤ : π̃i(ehi , x−i) = π̃i(x) ∀i ∈ N, h ∈ supp (xi)

o

• Thus:

¤o ∩ int(¤) ⊂ ¤NE ⊂ ¤o



5.2 Examples

Example 5.1 (Prisoner’s dilemma game) Clearly, as t→ +∞:

ξiC (t, x
o)→ 0 for i = 1, 2 and any xo ∈ int (¤)



Example 5.2 (Coordination game)
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Note (a) instability of the mixed NE and (b) the history dependence



Example 5.3 (Hawk-dove game)
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Note (a) instability of the mixed NE (!) and (b) the different history

dependence



Example 5.4 (Entry deterrence game)
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The population state may converge to “no entry” and each such state, with

x2Y < 1/2 is Lyapunov stable

But perpetual small population shocks (random mutations) will eventually

take it to (E, Y )



Next lecture March 22: First about general
deterministic selection dynamics and then about

stochastic population dynamics

• Lecture notes

• Benaim and Weibull (2003)

• Young (1993, 1998)

THE END


