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1 The multi-population replicator dynamic

• Domain of analysis: finite games in normal form, G = (N,S, π), with
mixed-strategy extensions, G̃ = (N,¤ (S) , π̃)

• For each player role i ∈ N : a (continuum) population of individuals

• All individuals use pure strategies, but may shift from one pure strategy
to another, depending how well they do

• A mixed-strategy profile x = (x1, ..., xn) ∈ ¤ (S) interpreted as a
population state

• With the time argument t suppressed:

ẋih =
h
π̃i(e

h
i , x−i)− π̃i(x)

i
· xih ∀i ∈ N,h ∈ Si, x ∈ ¤



1.1 Results

Proposition 1.1 (Samuelson and Zhang, 1992) If a pure strategy h ∈ Si
is iteratively strictly dominated (by a pure or mixed strategy), then

x0 ∈ int (¤) ⇒ lim
t→+∞

ξih
³
t, x0

´
= 0

Proposition 1.2 (Nachbar, 1990) If an interior solution trajectory converges,
then its limit point is a Nash equilibrium:∙

x0 ∈ int (¤) ∧ lim
t→+∞

ξ
³
t, x0

´
= x

¸
⇒ x ∈ ¤NE

Proposition 1.3 (Bomze, 1986) If x ∈ ¤ (S) is Lyapunov stable, then x ∈
¤NE.

Proposition 1.4 (Ritzberger and Weibull, 1995) x ∈ ¤ (S) is asymptoti-
cally stable iff x is a strict NE.



2 General selection dynamics

Consider n-population dynamics of the form

ẋih = gih(x)xih ∀i ∈ N,h ∈ Si, x ∈ ¤
where g is regular:

Definition 2.1 g : ¤ (S) → Rm is a regular growth-rate function if it is

locally Lipschitz continuous and gi(x) · xi = 0 for all i ∈ N,x ∈ ¤ (S).

Here m = |S1|+ ...+ |Sn|.

• This guarantees the existence and uniqueness of solutions, by the
Picard-Lindelöf Theorem, and that ¤ (S) is invariant



2.1 Classes of growth-rate functions

• Payoff monotonicity (PM):

π̃i(e
h
i , x−i) > π̃i(e

k
i , x−i) ⇔ gih(x) > gik(x)

• Payoff positivity (PP):

sign [gih(x)] = sign
h
π̃i(e

h
i , x−i)− π̃i(x)

i

• Weak payoff-positivity (WPP):

let Bi (x) =
n
h ∈ Si : π̃i(e

h
i , x−i) > π̃i(x)

o
and require

Bi (x) 6= ∅ ⇒ gih(x) > 0 for some h ∈ Bi (x)

• Convex payoff monotonicty (CPM):

π̃i(yi, x−i) > π̃i(e
k
i , x−i) ⇔ yi · gi(x) > gik(x)



2.2 Examples

1. The (Taylor, 1979) multi-population replicator dynamic:

gih(x) = π̃i(e
h
i , x−i)− π̃i(x)

What classes does this belong to?

2. Random aspiration levels, rejection of current strategy if falls short,

and then imitation of randomly drawn individual in own population

3. A well-behaved one-dimensional family of growth-rate functions:

gih(x) =
exp

h
σπ̃

³
ehi , x−i

´i
P
k∈Si xik exp

h
σπ̃

³
eki , x−i

´i − 1
for some σ > 0



• Regular? What classes does it belong to?

[Hint: For CM, use Jensen’s inequality!]

• Approaches replicator orbits as σ → 0:

gih(x) ≈
1 + σπ̃

³
ehi , x−i

´
− [1 + σπ̃ (x)]

1 + σπ̃ (x)
→ σ ·

h
π̃
³
ehi , x−i

´
− π̃ (x)

i

• Approaches “best-reply dynamic” as σ → +∞:

gih(x) ≈
exp

h
σπ̃

³
ehi , x−i

´i
P
k∈βi(x) xik exp

h
σπ̃

³
eki , x−i

´i − 1
→

⎧⎨⎩
³P

k∈βi(x) xik
´−1 − 1 ∀h ∈ βi (x)

−1 ∀h /∈ βi (x)



2.3 Results

Proposition 2.1 (Hofbauer and Weibull, 1996) If a pure strategy h ∈ Si
is iteratively strictly dominated (by a pure or mixed strategy), then its

population share converges to zero, from any interior initial state and in all

CPM dynamics.

Proof sketch:

1. Suppose k ∈ Si is strictly dominated by yi ∈ ∆ (Si):

π̃i(yi, x−i) > π̃i(e
k
i , x−i) ∀x ∈ ¤ (S)

2. Let V : int(¤)→ R be defined by

V (x) =
X
h∈Si

yih ln(xih)− ln(xik)



3. Then V increases along any CPM dynamic:

V̇ (x) =
X
h∈Si

∂V (x)

∂xih
ẋih =

X
h∈S

yihẋih
xih

− ẋik
xik

=
X
h∈Si

yihgih(x)− gik(x) = yi · gi (x)− gik(x) > 0

4. Indeed, one can show that ∃δ > 0 s.t. V̇ (x) > δ ∀x

5. Hence V (x)→ +∞ and thus xik → 0

• We also show that the result is essentially sharp: if a dynamic is not
CPM then ∃ game with a strictly dominated strategy that survives in
an insignificant population share forever.



Proposition 2.2 (Weibull, 1995) If an interior solution trajectory converges

in any WPP dynamic, then its limit point is a Nash equilibrium.

Proposition 2.3 (Weibull, 1995) If x ∈ ¤ (S) is Lyapunov stable in any
WPP dynamic, then x ∈ ¤NE.



2.4 Set-wise stability

• For each player role i, let Ti ⊂ Si and consider the sub-polyhedron

¤ (T ) = ×i∈N∆ (Ti)

Definition 2.2 X = ¤ (T ) contains its (pure weakly) better replies if for
all x ∈ X:

π̃i(e
h
i , x−i) ≥ π̃i(x) ⇒ h ∈ Ti

Definition 2.3 A closed invariant set X is asymptotically stable if it is
Lyapunov stable and has a nbd from which all solution trajectories converge
to the set.

Proposition 2.4 (Ritzberger and Weibull, 1995) If a subpolyhedron¤ (T )
contains its better replies, then it is asymptotically stable in all PP dynam-
ics. If a subpolyhedron ¤ (T ) is asymptotically stable in some PP dynamic,
then it contains its better replies.



Proposition 2.5 (Ritzberger and Weibull, 1995) If a subpolyhedron¤ (T ) =
×i∈N∆ (Ti) contains its better replies, then it contains an essential NE-

component and a (KM) strategically stable set, and a proper equilibrium.

Remark 2.1 Sufficient for this result that ¤ (T ) = ×i∈N∆ (Ti) contains

its best replies. Such as set is called a curb set (closed under rational

behavior):

βi [¤ (T )] ⊂ Ti ∀i ∈ N



2.5 Examples

• Reconsider the battle-of-the sexes game where player 1 has an outside
option (go to a café with a friend).

1

L R

a a bb

(3,1) (0,0) (1,3)(0,0)

(2,v)
A B

2

1

• Multiple SPE but unique forward-induction solution: s∗ = (Ra,A)



• What strategy profiles, or subpolyhedra, are asymptotically stable in
PP dynamics?

A B
La 2, v 2, v
Lb 2, v 2, v
Ra 3, 1 0, 0
Rb 0, 0 1, 3



3 Stochastic selection dynamics

[Benäım and Weibull (2003) and (2009)]

• Finite n-player game G = (I, S, π) in normal form [Note change of

notation: I instead of N ]

• One population, of finite size N , for each player role

• All individuals play pure strategies

• Random draw of 1 individual for strategy review, at times t = 0, 1/N,

2/N...



• Equal probability for each of the nN individuals to be drawn

• Population state: vector X (t) = hX1 (t) , ...,Xn (t)i of population-
share vectors Xi (t) = (Xih (t))h∈Si where Xih (t) = Nih (t) /N

• Define a Markov chain XN =
D
XN (t)

E
on

ΘN = {x ∈ ¤(S) : Nxih ∈ N ∀i ∈ I, h ∈ Si}
as follows:

1. ∀i ∈ I and h, k ∈ Si ∃ a continuous function phNik : ¤(S)→ [0, 1] s.t.

xik = 0 ⇒ phNik (x) = 0

and ∀x ∈ ΘN :

Pr
∙
XN
i (t+

1

N
) = xi +

1

N

³
ehi − eki

´
| XN(t) = x

¸
= phNik (x)



2. ∀x ∈ ΘN, y ∈ Rm (m = |S1|+ ...+ |S1|):

Pr
∙
XN(t+

1

N
) = x+

1

N
y | XN(t) = x

¸
=

(
phNik (x) if yi = ehi − eki and yj = 0 ∀j 6= i
0 otherwise

3. Then the expected net increase in subpopulation (i, h), from t to t+

1/N , conditional upon the current state x, is

FN
ih (x) =

X
k 6=h

phNik (x)−
X
k 6=h

pkNih (x) .

4. Assume that

(a) FN bounded

(b) ∀ compact set C ∃ common Lipschitz constant ∀FN

(c) FN → F uniformly



5. Then also F is bounded and locally Lipschitz continuous

6. We are interested in deterministic continuous-time approximation of

XN when N is large



3.1 Mean-field equations

The system of mean-field equations:

ẋih = FN
ih (x) ∀i, h, x,N

• Solution mapping ξN : R×¤(S)→ ¤(S)

• The flow induced by FN

• Affine interpolation of the process XN : X̂N (connect the points by

straight-line segments)

• Deviation between the flow ξN and X̂N at any time t ∈ R:

||X̂N(t)− ξN(t, x)||∞ = max
i∈I,h∈Si

¯̄̄
X̂N
ih(t)− ξNih(t, x)

¯̄̄



• Given T < +∞, the maximal deviation in [0, T ]:

DN
N (T, x) = max

0≤t≤T
||X̂N(t)− ξN(t, x)||∞

• Consider also the limit flow ξ : R×¤(S)→ ¤(S) that solves

ẋih = Fih(x) ∀i, h, x

• Let

DN(T, x) = max
0≤t≤T

||X̂N(t)− ξ(t, x)||∞

Proposition 3.1 ∀T > 0 ∃ c > 0 such that ∀ε > 0 and anyN large enough:

Pr
h
DN(T, x) ≥ ε | XN(0) = x

i
≤ 2Me−ε

2cN ∀x ∈ ¤N(S).

• Here M = m− n, the dimension of the tangent space of ¤(S)



• This result can be used, in combination with the Borel-Cantelli Lemma,
to establish result that connect the behavior of XN for N large, with

properties of its mean-field.



3.2 Exit times

Definition 3.1 First exit time from a set B ⊂ ¤(S):

τN(B) = inf
n
t ≥ 0 : X̂N(t) /∈ B

o
.

• Consider the forward orbit γ+(x0) of the mean-field solution ξ through
x0 ∈ ¤(S)

Proposition 3.2 Let B be an open nbd of the closure of γ+(x0) and sup-

pose that XN(0)→ x0. Then

Pr
∙
lim

N→∞
τN(B) = +∞

¸
= 1

• In particular, if the mean-field growth-rate function is WPP, x0 ∈
int [¤(S)] and ξ

³
t, x0

´
→ x∗, then we know from the above that



x∗ ∈ ¤NE(S), and then this proposition says that XN (t), for large

enough N , will stay close to the trajectory of ξ and will remain for a

very long time near the Nash equilibrium.

Definition 3.2 The basin of attraction of a closed asymptotically stable

set A ⊂ ¤(S) is the set

B(A) = {x ∈ ¤(S) : ξ(t, x)t→∞ → A}

Proposition 3.3 Let A ⊂ ¤(S) be closed and asymptotically stable set in
the mean-field flow ξ. Every nbd B1 ⊂ B(A) of A contains a nbd B0 of A

s.t.

XN(0) ∈ B0 ∀N ⇒ Pr
∙
lim inf

N→∞
τN(B0) = +∞

¸
= 1

• In particular, if the mean-field growth-rate function is PP and A =

¤ (T ) is a subpolyhedron that contains its better replies, then we know



from the above that A is asymptotically stable, and thus, for allN large

enough: if XN starts in A, or near it, then XN will stay in or near A,

for a very long time.

3.3 Visitation rates

Definition 3.3 Let x ∈ ¤ (S). A state y ∈ ¤ (S) belongs to the omega
limit set ω(x) of x if limtk→+∞ ξ(tk, x) = y for some sequence tk → +∞.

Definition 3.4 The Birkhoff center BC(ξ) of a flow ξ is the closure of set

of states x ∈ ω(x).

• All stationary states and all points on periodic orbits belong the Birkhoff
center.



Definition 3.5 The visitation rate in a set C ⊂ ¤ (S) during a time interval
[0, T ] is

V N(C, T ) =
1

|T(T )|
X

t∈T(T )
1{XN(t)∈C}

where T (T ) is the set of times t = 0, 1/n, 2/N, ... ≤ T .

Proposition 3.4 For any open nbd A of BC(ξ) :

lim
N→∞

∙
lim inf

T→∞
V N(A,T )

¸
= 1 a.s.

• In other words: almost all of the time the stochastic process will “hang
around” the Birkhoff center of its mean-field.



• Next lecture: stochastic models of noisy best-reply adaptation

• References: Young (1993), Hurkens (1995) and Young (1998)

THE END


