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1 The multi-population replicator dynamic

e Domain of analysis: finite games in normal form, G = (N, S, ), with
mixed-strategy extensions, G = (N, 1 (S), )

e For each player role i € N: a (continuum) population of individuals

e All individuals use pure strategies, but may shift from one pure strategy
to another, depending how well they do

e A mixed-strategy profile x = (x1,...,xn) € (S) interpreted as a
population state

e With the time argument ¢ suppressed:
dip = |Filel, m_q) — 7i(2)| -2y, Vi€ Nh e Sjzel



1.1 Results

Proposition 1.1 (Samuelson and Zhang, 1992) [/f a pure strategy h € S;
is iteratively strictly dominated (by a pure or mixed strategy), then

m_ & (t,2%) =0

2 eint(@) = i
t——+400

Proposition 1.2 (Nachbar, 1990) /f an interior solution trajectory converges,

then its limit point is a Nash equilibrium:
t——+00

2 eint (@) A lim {(t,mo):m] = ¢ ecOVE

Proposition 1.3 (Bomze, 1986) If x € L1(S) is Lyapunov stable, then x €
ONE.

Proposition 1.4 (Ritzberger and Weibull, 1995) = € [1(S) is asymptoti-
cally stable iff x is a strict NE.



2 General selection dynamics

Consider n-population dynamics of the form

Tih = gih(a})azih Vie N,he S;,x el

where g is regular:

Definition 2.1 g : LJ(S) — R™ js a regular growth-rate function if it is
locally Lipschitz continuous and g;(x) - x; = 0 for all i € N, x € [1(.S).

Here m = |S1| + ... + |Shl.

e This guarantees the existence and uniqueness of solutions, by the
Picard-Lindelof Theorem, and that [J(.S) is invariant



2.1 Classes of growth-rate functions

e Payoff monotonicity (PM):

fiel, x_y) > (el 2_;) o gin(x) > gir(z)

e Payoff positivity (PP):

sign [g;5,(x)] = sign [#;(ef!, 2_;) — #i(2)]

o Weak payoff-positivity (WPP):
let B;(z) = {h €S %i(e?,x_i) > %Z(aj)} and require

B;(zx) # 9 = g;p(x) > 0 for some h € B; (x)

e Convex payoff monotonicty (CPM):

Fi(yi, o) > (el x_y) o yi- gi(@) > gin(x)



2.2 Examples

1. The (Taylor, 1979) multi-population replicator dynamic:
gin(x) = filef, w—i) — Fi(w)

What classes does this belong to?

2. Random aspiration levels, rejection of current strategy if falls short,
and then imitation of randomly drawn individual in own population

3. A well-behaved one-dimensional family of growth-rate functions:

exp {07’% (e?, m_z)]

ZRGSZ' Ll €EXP [0'7':(" (e,]f, x_z)}

gin(x) =

for some o >0



e Regular? What classes does it belong to?

[Hint: For CM, use Jensen's inequality!]

e Approaches replicator orbits as o — 0:

1+ ot (el 2_;) — [1+ o ()] o i (e

: ~ €, r_3;
g’l,h(aj) 1 _|_ 0'7‘:(" (x) 1 (4

e Approaches “best-reply dynamic” as 0 — +00:
exp [07"7 (e,?, x_zﬂ
Zkeﬁi(a:) T} €XP [07"? (e,]f, a:_z)}

L (Srepza) T —1 vhe B, (2)
—1 Vh & B;(z)

—1

gin(x) =

)~ # )



2.3 Results

Proposition 2.1 (Hofbauer and Weibull, 1996) I/f a pure strategy h € S;
is iteratively strictly dominated (by a pure or mixed strategy), then its

population share converges to zero, from any interior initial state and in all
CPM dynamics.

Proof sketch:

1. Suppose k € S; is strictly dominated by y; € A (S;):

#i(ys, ) > (el ;) Vo € O(S)

2. Let V :int(LJ) — R be defined by

V(z) = D yipIn(zp) — In(z)
hes;



3. Then V increases along any CPM dynamic:

hes, OTin s T Tik

Z YihTin o Tik

= > vingin(z) — gip(x) = y; - g (x) — gir(x) > 0
hes;

4. Indeed, one can show that 36 > 0s.t. V (z) > Va
5. Hence V(z) — +oco and thus z;,. — 0

e We also show that the result is essentially sharp: if a dynamic is not
CPM then 4 game with a strictly dominated strategy that survives in
an insignificant population share forever.



Proposition 2.2 (Weibull, 1995) [f an interior solution trajectory converges
in any WPP dynamic, then its limit point is a Nash equilibrium.

Proposition 2.3 (Weibull, 1995) If x € [I(S) is Lyapunov stable in any
WPP dynamic, then z € OV,



2.4 Set-wise stability

e For each player role 7, let T; C S; and consider the sub-polyhedron

U(T) = x;enA(T;)

Definition 2.2 X = [I(7') contains its (pure weakly) better replies if for
all z € X:

(el m_;) > #i(x) = heT,

Definition 2.3 A closed invariant set X is asymptotically stable if it is
Lyapunov stable and has a nbd from which all solution trajectories converge
to the set.

Proposition 2.4 (Ritzberger and Weibull, 1995) If a subpolyhedron U (T)
contains its better replies, then it is asymptotically stable in all PP dynam-
ics. If a subpolyhedron U1 (T) is asymptotically stable in some PP dynamic,
then it contains its better replies.



Proposition 2.5 (Ritzberger and Weibull, 1995) If a subpolyhedron(T') =
X;eNAQ (T;) contains its better replies, then it contains an essential NE-
component and a (KM) strategically stable set, and a proper equilibrium.

Remark 2.1 Sufficient for this result that L1(T) = X;cnA (1;) contains

its best replies. Such as set is called a curb set (closed under rational
behavior):

g;[L(T)] CcT;, VieN



2.5 Examples

e Reconsider the battle-of-the sexes game where player 1 has an outside
option (go to a café with a friend).

(31) (0,0) (0,0) (13)

e Multiple SPE but unique forward-induction solution: s* = (Ra, A)



e What strategy profiles, or subpolyhedra, are asymptotically stable in
PP dynamics?

La 2,v
Lb 2,v
Ra 3,1
Rb 0,0



3 Stochastic selection dynamics

[Benaim and Weibull (2003) and (2009)]

e Finite n-player game G = (I, S, 7) in normal form [Note change of
notation: [ instead of N]

e One population, of finite size IV, for each player role
e All individuals play pure strategies

e Random draw of 1 individual for strategy review, at times ¢t =0, 1/N,
2/N...



Equal probability for each of the n/N individuals to be drawn

Population state: vector X (t) = (X71(¢),..., Xn(t)) of population-
share vectors X; (t) = (Xjp, (¢))peg, Where Xp, (8) = Ny (¢) /N

Define a Markov chain XV = <XN (t)> on

@N:{xED(S)Nx,LhGN WGI,hESz‘}

as follows:

. Vi€ I and h, k € S; 3 a continuous function p : (S) — [0,1] s.t.
z;. =0 = p N(z)=0

and Vz € ©:

1 1
Pr XN (e + 1) =2+ - (e = ef) | XV (1) = o] = Pl 0)



2. Ve € ON y e R™ (m = |S1| + ... + |S1]):
1 1
Pr [XN(H—N) =z+ oy | XV =2

0 otherwise

3. Then the expected net increase in subpopulation (i, h), from ¢ to ¢t +
1/N, conditional upon the current state z, is

hN kN
Ejp(x) = > piip (z) = Y oy (2) -
k£h k2h
4. Assume that
(a) F bounded
(b) V compact set C' 3 common Lipschitz constant VFV

(c) FN — F uniformly



5. Then also F' is bounded and locally Lipschitz continuous

6. We are interested in deterministic continuous-time approximation of
XN when N is large



3.1 Mean-field equations

The system of mean-field equations:

i, = FN(z) Vi h,z,N
e Solution mapping &V : R x O(S) — 0O(S)
e The flow induced by F&

e Affine interpolation of the process X%V: X (connect the points by
straight-line segments)

e Deviation between the flow ¢V and XV at any time ¢ € R:

o N N >IN N
IRV @) = ¥ 2)lloo = | _max | K{(E) - €0 (1,2))



e Given T' < 400, the maximal deviation in [0,T]:

N o IV N
Dn(T;z) = max [[X7(t) — &7 (¢, 2)lloo

e Consider also the limit flow £ : R x [LJ(S) — LI(.S) that solves

Tip = Fijp(z) Vi h,

o Let

N o N
DN(T,z) = max [IXV(¢) - £(t,2)|o0

Proposition 3.1 V71" > 0dc > 0 such thatVe > 0 and any N large enough:
Pr[DV(T,2) > ¢ | XV(0) = 2| <2Me =N vz e ON(S).

e Here M = m — n, the dimension of the tangent space of [J(5)



e This result can be used, in combination with the Borel-Cantelli Lemma,
to establish result that connect the behavior of X% for N large, with
properties of its mean-field.



3.2 Exit times

Definition 3.1 First exit time from a set B C [1(.S):

N(B)=inf{t>0: XN(t) ¢ B} .

e Consider the forward orbit v (z°) of the mean-field solution & through
20 € (9)

Proposition 3.2 Let B be an open nbd of the closure of v (z9) and sup-
pose that XV (0) — «0. Then

Pr[ lim 7V(B) = +00| =1
N—o0

e In particular, if the mean-field growth-rate function is WPP, 20 ¢
int [LJ(S)] and & (t,azo) — ¥, then we know from the above that



z* € ONE(S), and then this proposition says that X (¢), for large
enough IV, will stay close to the trajectory of £ and will remain for a
very long time near the Nash equilibrium.

Definition 3.2 The basin of attraction of a closed asymptotically stable
set A C LI(S) is the set

B(A) = {z € 1(5) : £(¢,2)t 00 — A}

Proposition 3.3 Let A C [J(S) be closed and asymptotically stable set in
the mean-field flow . Every nbd B1 C B(A) of A contains a nbd By of A
S.t.

xN0)e By YN = Pr lim _inf ™N(Bg) = 40| =1
— 00

e In particular, if the mean-field growth-rate function is PP and A =
LI(T) is a subpolyhedron that contains its better replies, then we know



from the above that A is asymptotically stable, and thus, for all NV large
enough: if XN starts in A, or near it, then XV will stay in or near A,
for a very long time.

3.3 Visitation rates

Definition 3.3 Let x € [1(S). A state y € [1(S) belongs to the omega
limit set w(x) of x if limy, 0 §(tg, ) = y for some sequence t}, — +oo.

Definition 3.4 The Birkhoff center BC (&) of a flow & is the closure of set
of states x € w(x).

e All stationary states and all points on periodic orbits belong the Birkhoff
center.



Definition 3.5 The visitation rate in a set C C [1(S) during a time interval
[0, T] is
1

VIO = ey

2 1{XN(t)eC}

teT(T)
where T (T) is the set of timest =0,1/n,2/N,... <T.

Proposition 3.4 For any open nbd A of B¢ (¢) :

lim |lim inf VA, T) =1 as.

N —o0 T—o0

e In other words: almost all of the time the stochastic process will “hang
around”’ the Birkhoff center of its mean-field.



e Next lecture: stochastic models of noisy best-reply adaptation

e References: Young (1993), Hurkens (1995) and Young (1998)

THE END



