
THE POISSON–DIRICHLET

DISTRIBUTION AND ITS RELATIVES

REVISITED

LARS HOLST

Department of Mathematics, Royal Institute of Technology
SE–100 44 Stockholm, Sweden

E-mail: lholst@math.kth.se

December 17, 2001

Abstract

The Poisson-Dirichlet distribution and its marginals are studied, in partic-
ular the largest component, that is Dickman’s distribution. Size-biased sam-
pling and the GEM distribution are considered. Ewens sampling formula and
random permutations, generated by the Chinese restaurant process, are also
investigated. The used methods are elementary and based on properties of the
finite-dimensional Dirichlet distribution.

Keywords: Chinese restaurant process; Dickman’s function; Ewens sampling
formula; GEM distribution; Hoppe’s urn; random permutations; residual allo-
cation models; size-biased sampling

ams 1991 subject classification: primary 60g57

secondary 60c05, 60k99

Running title: The Poisson–Dirichlet distribution revisited

1 Introduction

Random discrete probability distributions occur in many situations in pure and ap-
plied probability. One such is the Poisson–Dirichlet distribution introduced by King-
man (1975). This distribution or special cases of it has proved to be useful in a va-
riety of interesting applications in combinatorics, analytic number theory, Bayesian
statistics, population genetics and ecology; see Arratia, Barbour and Tavaré (2001),



Donnelly and Grimmett (1993), Kingman (1980), Pitman and Yor (1997), Tenen-
baum (1995), and the references therein.

Following Kingman (1993, Chapter 9) we introduce the Poisson–Dirichlet distri-
bution as follows. Let Π be a Poisson point process in the first quadrant of the real
(t, x)-plane with intensity measure e−x/x dtdx. Then, the number of points of Π in
the set

Aθ,z := {(t, x) : 0 ≤ t ≤ θ, z < x}
is, for each z > 0, Poisson distributed with mean θE1(z), where

E1(z) :=
∫ ∞

z

e−x

x
dx =

∫ ∞

1

e−zx

x
dx

denotes the exponential integral function. With probability one

Π ∩Aθ,0 = {(Tj , X[j]) : j = 1, 2, . . . },

where X[1] > X[2] > · · · > 0 are points of a non-homogenous Poisson process on the
positive real half line with intensity measure θe−x/x dx, and independent of these
points the T ’s are independent random variables uniform on (0, θ). The density of
X[j] is

fX[j]
(x) =

θe−x

x

(θE1(x))j−1

(j − 1)!
e−θE1(x), x > 0.

The random variable Sθ = X[1] + X[2] + · · · has the Laplace transform

E(e−zSθ) = exp
(−

∫ ∞

0
(1− e−zx)

θe−x

x
dx

)
= (1 + z)−θ, |z| < 1,

implying that Sθ is Γ(θ) distributed with density xθ−1e−xI(x > 0)/Γ(θ). The
stochastic process {Sθ : θ > 0}, sometimes called Moran’s subordinator, has in-
dependent stationary gamma distributed increments. Define the Poisson–Dirichlet
distribution, abbreviated PD(θ), on the (infinite-dimensional) simplex

∆ := {(x1, x2, . . . ) : xi ≥ 0, x1 + x2 + · · · = 1}

by the random vector

(V1, V2, . . . ) := (X[1]/Sθ, X[2]/Sθ, . . . ).

Here V1 > V2 > · · · > 0, V1 +V2 + · · · = 1, are the ordered normalized (almost surely
different) jumps of Moran’s subordinator up to time θ.

Kingman (1993, Section 9.6) says that “the distribution PD(θ) is rather less
than user-friendly”; few explicit results for the marginal distributions are given there.
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Some such results are obtained for example in Watterson (1976) and Griffiths (1988).
The main purpose of this paper is to derive and present properties of the Poisson–
Dirichlet and related distributions in a way, which we think is more transparent than
previously. Marginal distributions and moments of the V ’s are obtained in Section 2.
Certain aspects of the distribution of 1/V1 are studied in Section 3. In Section 4
we review size-biased sampling and the GEM distribution. Ewens sampling formula
is considered in Section 5. Finally, random permutations generated by the Chinese
restaurant process, and Hoppe’s urn are investigated in Section 6.

2 Marginal distributions of the Poisson–Dirichlet

Let {Sθ : θ > 0} be Moran’s subordinator. For θ > 0 fixed and α = θ/n consider
the independent Γ(α) distributed increments

Yj = Sjα − S(j−1)α, j = 1, 2, . . . , n,

and their (almost surely different) order statistic Y[1] > Y[2] > · · · > Y[n]. With X’s
as in the Introduction we have

(Y[1], Y[2], . . . , Y[n], 0, 0, . . . ) ⇒ (X[1], X[2], . . . ), n →∞.

An elementary calculation by change of variables shows, that the random variable
Sθ = Y1 + · · ·+ Yn is independent of the random vector

(Z1, . . . , Zn) := (Y1/Sθ, . . . , Yn/Sθ),

and that the vector has a symmetric Dirichlet distribution, D(α, . . . , α), with density

Γ(θ)
Γ(α)n

xα−1
1 · · ·xα−1

n ,

relative to the (n− 1)-dimensional Lebesgue measure on the simplex

∆n := {(x1, . . . , xn) : xi ≥ 0, x1 + · · ·+ xn = 1}.

Hence, for the ordered normalized increments Z[1] > Z[2] > · · · > Z[n], and the
ordered normalized jumps V1, V2, . . . , we have

(Z[1], Z[2], . . . , Z[n], 0, 0, . . . ) ⇒ (V1, V2, . . . ), n →∞,

and also that the V ’s are independent of Sθ.
The observations above are the main tools used below. First we prove, cf. Grif-

fiths (1988, Theorem 2):
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Proposition 2.1 For x > 0:

P (V1 ≤ x) = 1 +
[1/x]∑

j=1

(−θ)j

j!

∫ 1

x
· · ·

∫ 1

x

(1− y1 − · · · − yj)θ−1
+

y1 · · · yj
dy1 · · · dyj .

Proof. For 0 < x < 1 inclusion-exclusion, symmetry and properties of the Dirichlet
distribution give

P (Z[1] ≤ x) = 1− P (Z1 > x ∪ · · · ∪ Zn > x)

= 1 +
[1/x]∑

j=1

(−1)j

(
n

j

)
P (Z1 > x ∩ · · · ∩ Zj > x)

= 1 +
[1/x]∑

j=1

(−1)j

(
n

j

)∫ 1

x
· · ·

∫ 1

x

Γ(θ)(1− y1 − · · · − yj)
θ−jα−1
+

Γ(α)jΓ(θ − jα)y1−α
1 · · · y1−α

j

dy1 · · · dyj .

Thus, for n →∞ and α = θ/n → 0 we have
(

n

j

)
αj → θj/j!, αΓ(α) = Γ(α + 1) → 1, P (Z[1] ≤ x) → P (V1 ≤ x),

and therefore

P (Z[1] ≤ x) → 1 +
[1/x]∑

j=1

(−θ)j

j!

∫ 1

x
· · ·

∫ 1

x

(1− y1 − · · · − yj)θ−1
+

y1 · · · yj
dy1 · · · dyj ,

proving the assertion. 2

Proposition 2.2 For k = 1, 2, . . . :

E(V k
1 ) =

E(Xk
[1])

E(Sk
θ )

=

∫∞
0 yk−1e−ye−θE1(y) dy

(θ + 1) · · · (θ + k − 1)
.

Proof. The independence between Sθ and V1 (= X[1]/Sθ) implies

E(Xk
[1]) = E(V k

1 Sk
θ ) = E(V k

1 )E(Sk
θ ).

As Sθ is Γ(θ) distributed and X[1] has the density

fX[1]
(y) =

θe−y

y
e−θE1(y), y > 0,

the assertion follows. 2

Using similar arguments formulas for higher and mixed moments of the V ’s can
readily be obtained, cf. Griffiths (1979). The following result is essentially given in
Watterson (1976, Theorem).
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Proposition 2.3 The joint density of (V1, . . . , Vr) satisfies

fV1,...,Vr(z1, . . . , zr) =
θr(1− z1 − · · · − zr)θ−1

z1 · · · zr
P

(
V1 ≤ zr

1− z1 − · · · − zr

)
,

for z1 > z2 > · · · > zr > 0 and z1 + z2 + · · ·+ zr < 1; it is 0 elsewhere.

Proof. Let Z[1] > Z[2] > · · · > Z[n] be the order statistic of D(α, . . . , α). Integrating
over the set

B = {(xr+1, . . . , xn) : 0 ≤ xi < zr, xr+1 + · · ·+ xn = 1− z1 − · · · − zr},

we see that the density of (Z[1], . . . , Z[r]) can be written
∫

B

n(n− 1) . . . (n− r + 1)Γ(θ)
Γ(α)n

zα−1
1 · · · zα−1

r xα−1
r+1 · · ·xα−1

n dxr+1 · · · dxn−1

=
n(n− 1) · · · (n− r + 1)αrΓ(θ)

Γ(α + 1)rΓ(θ − rα)
zα−1
1 · · · zα−1

r

×
∫

B

Γ(θ − rα)
Γ(α)n−r

xα−1
r+1 · · ·xα−1

n dxr+1 · · · dxn−1.

By change of variables, yj = xj/(1− z1 − · · · − zr), the density becomes

n(n− 1) · · · (n− r + 1)αrΓ(θ)
Γ(α + 1)rΓ(θ − rα)

zα−1
1 · · · zα−1

r (1− z1 − · · · − zr)θ−rα−1

×P ( max
r+1≤j≤n

Z ′j ≤
zr

1− z1 − · · · − zr
),

where (Z ′r+1, . . . , Z
′
n) is D(α, . . . , α). Hence, as n →∞,

fZ[1],...,Z[r]
(z1, . . . , zr) → θr(1− z1 − · · · − zr)θ−1

z1 · · · zr
P (V1 ≤ zr

1− z1 − · · · − zr
).

As (Z[1], . . . , Z[r]) ⇒ (V1, . . . , Vr), the assertion follows. 2

3 Dickman’s function

Dickman (1930) found the limiting distribution of the largest prime factor in a large
integer. Surprisingly, the distribution is the same as that of V1 for θ = 1. Dickman’s
results have later been extended in different forms; see Donnelly and Grimmett
(1993) and the references therein. We call ρθ(x) = P (1/V1 > x) Dickman’s function
following Tenenbaum (1995, Chapter III.5), where the case θ = 1 is studied.
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Remark. Karl Dickman, born 1862, worked as an actuary in the end of the 19th
and the beginning of the 20th centuary. Proabably, he studied mathematics in the
1880’s at Stockholm University, where the legendary Mittag–Leffler was professor.
However, Dickman’s 1930 paper seems to be his only publication in mathematics.
The paper is a remarkable achievement of an old man.

Proposition 3.1 Dickman’s function ρθ(x) = P (1/V1 > x) is continuous for x ≥ 0
and satisfies

ρθ(x) = 1, for 0 ≤ x ≤ 1,

xθρ′θ(x) + θ(x− 1)θ−1ρθ(x− 1) = 0, for x > 1,

xθρθ(x) =
∫ x

x−1
θyθ−1ρθ(y) dy, for x ≥ 1,

ρθ(x) = 1 +
[x]∑

j=1

(−θ)j

j!

∫ 1

1/x
· · ·

∫ 1

1/x

(1− y1 − · · · − yj)θ−1
+

y1 · · · yj
dy1 · · · dyj .

Proof. From Proposition 2.3 we have

fV1(z) =
θ(1− z)θ−1

z
P (V1 ≤ z

1− z
), 0 < z < 1.

Hence for x > 1

ρ′θ(x) = −fV1(1/x)/x2 = −θ(x− 1)θ−1

xθ
ρθ(x− 1).

Therefore for x > 1

(xθρθ(x))′ = θxθ−1ρθ(x) + xθρ′θ(x) = θxθ−1ρθ(x)− θ(x− 1)θ−1ρθ(x− 1).

As ρθ(y) = 1 for 0 ≤ y ≤ 1, it follows that

xθρθ(x) =
∫ x

x−1
θyθ−1ρθ(y) dy, x ≥ 1.

The explicit formula for ρθ is obtained in Proposition 2.1. 2

Proposition 3.2 Let V1, U1, U2, U3, . . . be independent random variables such that
P (V1 ≤ v) = ρθ(1/v) and the U ’s be B(1,θ) (density θ(1−u)θ−1I(0 < u < 1)). Then

V1, max
(
U1, (1− U1)V1

)
, max

(
U1, (1− U1)U2, (1− U1)(1− U2)U3, . . .

)
,

have the same distribution.
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Proof. By Proposition 3.1 we get for 0 < v ≤ 1

P (max(U1, (1− U1)V1) ≤ v)

=
∫ v

0
θ(1− u)θ−1P (V1 ≤ v/(1− u)) du =

∫ v

0
θ(1− u)θ−1ρθ((1− u)/v) du

= vθ

∫ 1/v

1/v−1
θyθ−1ρθ(y) dy = vθv−θρθ(1/v) = P (V1 ≤ v).

From this it follows that the random variables

V1, max(U1, (1− U1)V1), max(U1, (1− U1)U2, (1− U1)(1− U2)V1), . . .

have the same distribution. As almost surely

(1− U1)(1− U2) · · · (1− Un) → 0, n →∞,

the assertion follows. 2

The explicit formula for ρθ(x) in Proposition 3.1 is not useful for calculations.
However, the differential-difference equation can be solved recursively. For 1 < x < 2
we get by integration by parts

ρθ(x) = 1−
∫ x

1
θ(1− t)θ−1t−θ dt = 1− θ

∞∑

j=0

(1− 1/x)θ+j/(θ + j),

and in particular ρ1(x) = 1− log x. Griffiths (1988, Theorem 1) derives a recursive
algorithm, useful for numerical computation of ρθ(x) (= h(x) in Griffiths’ notation),
for the function

gθ(x) = e−γθxθ−1ρθ(x)/Γ(θ),

where γ is Euler’s constant, using the following result in Watterson (1976).

Proposition 3.3 The function gθ is a probability density on the positive real half
line with Laplace transform

∫ ∞

0
e−zxgθ(x) dx = exp

(− θ

∫ 1

0

1− e−zu

u
du

)
.

Proof. As Sθ is Γ(θ) distributed and independent of V1 we get

e−θE1(z) = P (X[1] ≤ z) = P (SθV1 ≤ z) =
∫ ∞

0
P (V1 ≤ z/s)sθ−1e−s/Γ(θ) ds
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= zθ

∫ ∞

0
e−zxP (V1 ≤ 1/x)xθ−1/Γ(θ) dx = zθeγθ

∫ ∞

0
e−zxgθ(x) dx.

Thus ∫ ∞

0
e−zxgθ(x)dx = z−θe−γθe−θE1(z)

= exp
(− θ(

∫ ∞

1

e−zu

u
du + log z + γ)

)
= exp

(− θ

∫ 1

0

1− e−zu

u
du

)
,

using a well-known identity for the exponential integral. 2

Note that gθ is the density of an infinitely divisible probability distribution with
the Lévy–Khinchine measure θI(0 < u < 1)/u du, whose Laplace transform is an
entire analytic function. Inverting the transform we get for x > 0 and any real a:

ρθ(x) = Γ(θ)eγθx1−θ 1
2πi

∫ a+i∞

a−i∞
ezx+H(z) dz,

where

H(z) = −θ

∫ 1

0
(1− e−zu)/u du.

The saddle-point method can be used to study ρθ(x) for large x. Formally

gθ(x) =
1

2πi

∫ a+i∞

a−i∞
ezx+H(z) dz ≈ 1

2π

∫ ∞

−∞
e(a+it)x+H(a)+itH′(a)−t2H′′(a)/2 dt.

Choosing a such that x + H ′(a) = 0, we get for large x

gθ(x) ≈ eax+H(a)

√
2πH ′′(a)

.

With b = −a the equation x + H ′(a) = 0 becomes (eb − 1)/b = x/θ, and for x →∞
we have b = log(x/θ) + log log(x/θ) + · · · .

These formal calculations can be justified, see Tenenbaum (1995, pp. 373–376)
for the case θ = 1. By small modifications of Tenenbaum’s proof we obtain for the
general case:

Proposition 3.4 For Dickman’s function

ρθ(x) = Γ(θ)eγθx1−θ e−xb+θ
R b
0 (ey−1)/y dy

√
2π(x− x/b + θ/b)

(1 + O(
1
x

)), x →∞,

where (eb − 1)/b = x/θ.

From this we get the following tail behaviour of 1/V1 :

− log P (1/V1 > x) = − log ρθ(x) ³ x log x, x →∞.
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4 The GEM distribution and size-biased sampling

The content of this section can to a great extent be found in Kingman (1993, Sec-
tion 9.6); see also Pitman (1996).

Let P∗ = (P1, P2, . . . ) be a probability vector and ν1 a random variable such that

P (ν1 = j |P∗) = Pj , j = 1, 2, . . . .

Given P∗ and ν1 define ν2 so that

P (ν2 = k |P∗, ν1) = Pk/(1− Pν1), k = 1, 2, . . . , k 6= ν1.

Define similarly ν3

P (ν3 = ` |P∗, ν1, ν2) = P`/(1− Pν1 − Pν2), ` = 1, 2, . . . , ` 6= ν1, ν2,

and analogously ν4, ν5, . . . . The random probability vector

P π
∗ = (Pν1 , Pν2 , Pν3 , . . . )

is a size-biased permutation of P∗. Note that any permutation of the original prob-
ability vector P∗ has the same size-biased permutation P π∗ .

Proposition 4.1 Let Z∗ = (Z1, . . . , Zn) be D(α, . . . , α) distributed, θ = nα, and
define ν1, ν2, . . . , νn as above with P∗ = Z∗. Then

T1 = Zν1 , T2 = Zν2/(1− Zν1), T3 = Zν3/(1− Zν1 − Zν2), . . . ,

Tn−1 = Zνn−1/(1− Zν1 − · · · − Zνn−2),

are independent Beta distributed random variables such that Tj is B(1 + α, θ − jα)
with density

fTj (x) =
Γ(θ − (j − 1)α + 1)
Γ(1 + α)Γ(θ − jα)

xα(1− x)θ−jα−1, 0 < x < 1,

for j = 1, . . . , n− 1, and a size-biased permutation of Z∗ has the representation

Zπ
∗ =

(
T1, (1− T1)T2, (1− T1)(1− T2)T3, . . . , (1− T1)(1− T2) · · · (1− Tn−1)Tn

)
,

where Tn ≡ 1.
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Proof. A straightforward calculation shows that (Zν1 , Z1, . . . , Zν1−1, Zν1+1, . . . , Zn)
is D(1+α, α, . . . , α) distributed. Well-known properties of the Dirichlet distribution
or a direct calculation give that T1 = Zν1 is B(1+α, θ−α) distributed and indepen-
dent of the vector (Z1, . . . , Zν1−1, Zν1+1, . . . , Zn)/(1− T1), which has a D(α, . . . , α)
distribution.

The same argument can be used again on the last vector giving T2 = Zν2/(1−T1)
with a B(1 + α, θ − 2α) distribution, etc. 2

Next we generalize Proposition 3.2.

Proposition 4.2 Let V∗ = (V1, V2, . . . ) be PD(θ) distributed and V π∗ be a size-biased
permutation of it. Then

V π
∗ =

(
U1, (1− U1)U2, (1− U1)(1− U2)U3, . . .

)
,

where U1, U2, . . . are independent identically distributed B(1, θ) random variables.

Proof. Let Z∗ = (Z1, . . . , Zn) be D(α, . . . , α) and α = θ/n. We have as n →∞
(Z[1], . . . , Z[n], 0, 0, . . . ) ⇒ (V1, V2, . . . ).

From the previous proposition we get

(Zπ
∗ , 0, 0, . . . ) ⇒ (

U1, (1− U1)U2, (1− U1)(1− U2)U3, . . .
)
.

That this limiting distribution is the distribution of the size-biased permutation V π∗
is intuitively obvious; a rigerous proof can be found in Donnelly and Joyce (1989,
Theorem 3). 2

The distribution of V π∗ is the GEM(θ) distribution called after Griffiths, En-
gen and McCloskey, cf. Johnson, Kotz and Balakrishnan (1997, p. 237) and Pit-
man and Yor (1997, p. 858). The representation of the GEM distribution using
independent identically distributed random variables makes it more ’user-friendly’
than the Poisson–Dirichlet. Note that for any permutation-invariant function f the
random variables f(V π∗ ) and f(V∗) have the same distribution (provided they are
well-defined), which can be used to simplify certain calculations.

Define for 0 ≤ β < 1 and θ > −β the residual allocation model, cf. Pitman (1996),

V π
∗β :=

(
U1β, (1− U1β)U2β, (1− U1β)(1− U2β)U3β, . . .

)
,

where the U ’s are independent and Ujβ is B(1−β, θ+jβ) for j = 1, 2, . . . . The distri-
bution of the size-ordered permutation V∗β of V π

∗β defines a two-parameter Poisson-
Dirichlet distribution, abbreviated PD(β, θ); see Pitman and Yor (1997). Of course
PD(0, θ) is the same as PD(θ). Also the general case PD(β, θ) has many interesting
properties and applications as shown by Pitman and Yor.

10



5 Ewens sampling formula

Let the probability vector P∗ = (P1, P2, . . . ) be the subinterval-lengths of a division
of the unit interval. Draw m points at random in the unit interval by the uniform
distribution and let Aj be the number of subintervals containing exactly j of the
points for j = 1, 2, . . . . Clearly

A1 + 2A2 + 3A3 + · · · = m.

Proposition 5.1 Let Z∗ = (Z1, . . . , Zn) be D(α, . . . , α) distributed, θ = nα, and
define A1, A2, . . . as above with P∗ = Z∗. Then for non-negative integers a1, a2, . . .
with a1 + 2a2 + 3a3 + · · · = m and a1 + a2 + a3 + · · · = k we have

P (Aj = aj , j = 1, 2, . . . ) =
m!∏

j aj ! j!aj

n(n− 1) · · · (n− k + 1)
θ(θ + 1) · · · (θ + m− 1)

∏

j

(Γ(j + α)
Γ(α)

)aj

.

Proof. Let Y1, . . . , Yn be independent Γ(α) random variables with sum Sθ. Then
Z∗ = (Y1, . . . , Yn)/Sθ is D(α, . . . , α) distributed and independent of Sθ. The number
of ways of drawing k different Y ’s, allocating m objects into k classes of which aj

contain exactly j objects, and not ordering the classes is

n(n− 1) · · · (n− k + 1)
m!∏
j j!aj

1∏
j aj !

.

Thus by symmetry and independence we get

P (Aj = aj , j = 1, 2, . . . )

= n(n− 1) · · · (n− k + 1)
m!∏

j j!aj aj !
E

(Y1

Sθ
· · · Ya1

Sθ

Y 2
a1+1

S2
θ

· · · Y
2
a1+a2

S2
θ

Y 3
a1+a2+1

S3
θ

· · ·
)

=
m!∏

j aj ! j!aj

n(n− 1) · · · (n− k + 1)
E(Sa1+2a2+···

θ )
E(Y1) · · ·E(Ya1) E(Y 2

a1+1) · · ·

=
m!∏

j aj ! j!aj

n(n− 1) · · · (n− k + 1)
θ(θ + 1) · · · (θ + m− 1)

∏

j

(Γ(j + α)
Γ(α)

)aj

,

which proves the assertion. 2

Proposition 5.2 Let V∗ = (V1, V2, . . . ) be PD(θ) distributed, and define A1, A2, . . .
as above with P∗ = V∗. Then we have for non-negative integers a1, a2, . . . with
a1 + 2a2 + 3a3 + · · · = m and a1 + a2 + a3 + · · · = k

P (Aj = aj , j = 1, 2, . . . ) =
θk

θ(θ + 1) · · · (θ + m− 1)
m!∏m

j=1 aj ! jaj
.
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Proof. Letting n →∞, α = θ/n → 0 and using αΓ(α) = Γ(α + 1) → 1 we get

m!∏
j aj ! j!aj

n(n− 1) · · · (n− k + 1)αk

θ(θ + 1) · · · (θ + m− 1)

∏

j

(Γ(j + α)
Γ(α)

)aj

→ m!∏
j aj ! jaj

θk

θ(θ + 1) · · · (θ + m− 1)
.

As we have convergence of the ordered Z∗ to V∗, that is

(Z[1], Z[2], . . . , Z[n], 0, 0, . . . ) ⇒ (V1, V2, . . . ), n →∞,

the assertion follows from Proposition 5.1 and symmetry. 2

The distribution of (A1, A2, . . . ) for P∗ = V∗ in Proposition 5.2 is the famed
Ewens sampling formula, abbreviated ESF (θ). It has been established for many
different models; see Arratia, Barbour and Tavaré (2001), Johnson, Kotz and Bal-
akrishnan (1997, Chapter 41), and the references therein. In the next section we
will see how it comes up in connection with cycle-lengths of random permutations.
We have the following representation of ESF(θ); this is the starting-point of the
thorough investigations by Arratia et al.

Proposition 5.3 Let T1, T2, . . . be independent Poisson random variables with
E(Tj) = θ/j. Then for any integer m ≥ 0 the conditional distribution of (T1, T2, . . . )
given T1 + 2T2 + · · · = m is ESF(θ).

Proof. For non-negative integers a1, a2, . . . with a1 + 2a2 + · · · = m we have

P (Tj = aj , j = 1, 2, . . . |T1 + 2T2 + · · · = m)

= P (Tj = aj , j = 1, 2, . . . m)/P (T1 + 2T2 + · · ·+ mTm = m)

=
m∏

j=1

(θ/j)aj e−θ/j

aj !
/P (T1 + 2T2 + · · ·+ mTm = m).

Hence, the assertion is proved if

P (T1 + 2T2 + · · ·+ mTm = m) =
θ(θ + 1) · · · (θ + m− 1)

m!
e−θ

Pm
1 1/j .

This follows from the following calculation with generating functions:

E(sT1+2T2+···+mTm) = exp
( m∑

j=1

(sj − 1)θ/j
)
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= exp
(−

m∑

1

θ/j − θ log(1− s)− θ
∞∑

m+1

sj/j
)

= e−θ
Pm

1 1/j(1− s)−θe−θ
P∞

m+1 sj/j

= e−θ
Pm

1 1/j

(
m∑

`=0

(−θ

`

)
(−s)` +

∞∑

`=m+1

b`s
`

)
.

2

6 Random permutations

Every permutation of the numbers 1, 2, . . . ,m can be broken down into cycles. The
study of such cycles has a long history going back at least to Cauchy. In the seminal
paper by Shepp and Lloyd (1966) asymptotics of cycle-lengths in random permuta-
tions (uniform distribution) are investigated; see also the references therein. More
general combinatorial structures and other distributions than the uniform for such
objects are thoroughly investigated in the coming book by Arratia, Barbour and
Tavaré (2001), which also contains an extensive list of references. Below we will
study cycle-lengths in random permutations weighted by the number of cycles. Our
treatment is influenced by Arratia et al.

In the rest of this section we mean by a random permutation, a permutation
generated in the manner specified below by what is sometimes called the Chinese
restaurant process. This is also closely connected with the so called Hoppe’s urn.

Initially a list is empty and an urn contains one black ball of weight θ > 0. Balls
are successively drawn from the urn with probabilities proportional to weights. Each
drawn ball is replaced into the urn together with a new ball of weight 1 and numbered
by the drawing number. That number is also written in the list. At the first drawing
1 is written. If at drawing j the black ball is drawn, then j is written to the left of
the list, else j is written just to the right of the number of the drawn ball in the list.
In such a list the drawings N1 ≡ 1 < N2 < N3 < · · · at which the black ball was
drawn can be identified. Say, that after 8 drawings, the list is 5 8 3 6 4 1 2 7, then
N1 ≡ 1, N2 = 3, N3 = 5, and the urn contains balls numbered 1, 2, . . . , 8 and the
black ball.

After m drawings let K be the number of times the black ball was obtained and
let N1 ≡ 1 < N2 < · · · < NK be the corresponding drawing numbers. Denote by C1

the part of the list from N1(≡ 1) to the right; taking away C1, let C2 be the list from
N2 to the right, etc. The permutation with cycles C1, C2, . . . , CK defines our random
permutation. The lengths of cycles are C1, C2, . . . , CK . Let Aj be the number of
cycles of length j = 1, 2, . . . , that is the cycle-length count. Obviously,

A1 + A2 + · · ·+ Am = K, C1 + C2 + · · ·+ CK = A1 + 2A2 + · · ·+ mAm = m.

13



In the above example we have: m = 8, K = 3, C1 = (1 2 7), C2 = (3 6 4), C3 = (5 8),
C1 = 3, C2 = 3, C3 = 2, A1 = 0, A2 = 1, A3 = 2.

The above drawing scheme is such that any in advance specified permutation of
1, 2, . . . , m with k cycles has probability θk/θ(θ + 1) · · · (θ + m− 1). Thus, denoting
the number of permutations with k cycles by

[
m
k

]
,

m∑

k=1

[m

k

] θk

θ(θ + 1) · · · (θ + m− 1)
=

m∑

k=1

P (K = k) = 1.

Therefore

θ(θ + 1) · · · (θ + m− 1) =
m∑

k=1

[m

k

]
θk

is the generating function for the cycle numbers
[

m
k

]
, usually called (sign-less) Stir-

ling numbers of the first kind, cf. Knuth (1992).

Proposition 6.1 Let K be the number of cycles in a random permutation of the
numbers 1, 2, . . . ,m. Then

P (K = k) = P (I1 + I2 + · · ·+ Im = k) =
[m

k

] θk

θ(θ + 1) · · · (θ + m− 1)
,

where I1, I2, . . . , Im are independent Bernoulli random variables such that

P (Ij = 1) = 1− P (Ij = 0) = θ/(θ + j − 1).

Proof. The probability of getting the black ball in drawing j is θ/(θ + j − 1) inde-
pendently of what has happened in the previous drawings. Let Ij be the indicator
random variable for that event. These indicators are independet and K is the sum
of them. 2

Proposition 6.2 Let in a random permutation the cycle-lengths (from right to left)
be C1, C2, . . . . Then

P (C1 = j) = θ
(m− 1)(m− 2) · · · (m− j + 1)

(θ + m− j)(θ + m− j + 1) · · · (θ + m− 1)
;

the conditional distribution of (C2, C3, . . . ) given C1 = j is the same as the cycle-
length distribution in a random permutation of 1, 2, . . . ,m− j.

Proof. The number of permutations with C1 = j and with k cycles is

(m− 1)(m− 2) · · · (m− j + 1)
[
m− j

k − 1

]
;
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note that C1 begins with a 1 and has m − j numbers to the left with k − 1 cycles.
As permutations with the same number of cycles have the same probability (given
above) we get:

P (C1 = j, K = k) = (m−1)(m−2) · · · (m− j +1)
[m− j

k − 1

] θk

θ(θ + 1) · · · (θ + m− 1)
.

Thus

P (C1 = j) =
m∑

k=1

P (C1 = j, K = k)

= θ
(m− 1)(m− 2) · · · (m− j + 1)

θ(θ + 1) · · · (θ + m− 1)

∑

k

[m− j

k − 1

]
θk−1

= θ
(m− 1)(m− 2) · · · (m− j + 1)

θ(θ + 1) · · · (θ + m− 1)
θ(θ + 1) · · · (θ + m− j − 1) ,

proving the first assertion. The second assertion is obvious from the construction of
the random permutation using the Chinese restaurant process. 2

Proposition 6.3 The cycle-length count (A1, A2, . . . ) in a random permutation is
ESF(θ) distributed.

Proof. The number of permutations of 1, 2, . . . , m with a1 cycles of length 1, a2

cycles of length 2, . . . , a1 + 2a2 + · · · = m, is

m!∏
j j!aj

∏
j(j − 1)!aj

∏
j aj !

=
m!∏

j aj !jaj
;

the formula goes back to Cauchy. As each permutation with k = a1 + · · ·+am cycles
has the probability θk/θ(θ + 1) · · · (θ + m− 1), the assertion follows. 2

The next result gives the limiting distribution of the lengths of long cycles.
This was first obtained for the case θ = 1 by Shepp and Lloyd (1966). Thorough
investigations on asymptotics of cycles and other combinatorial stuctures including
results on rates of convergence are given in Arratia, Barbour and Tavaré (2001).
Representations using independent random variables such as in Proposition 5.3 play
an important rôle there. The limit behaviour for the number of cycles in a random
permutation can be obtained using the representation in Proposition 6.1 of K as a
sum of independent Bernoulli random variables, see Arratia et al.
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Proposition 6.4 In a random permutation the cycle-lengths converge as

(C1/m, C2/m, . . . , CK/m, 0, 0, . . . ) ⇒ GEM(θ), m →∞,

and the size-ordered cycle-lengths as

(C[1]/m,C[2]/m, . . . , C[K]/m, 0, 0, . . . ) ⇒ PD(θ), m →∞.

Proof. Using the Gamma function and Proposition 6.2 we have

P (C1 = j) =
θ

m

Γ(m + 1)
Γ(m− j + 1)

Γ(m− j + θ)
Γ(m + θ)

.

For 0 < x < 1, and j, m →∞ such that j/m → x, Stirling’s formula gives

mP (C1 = j) → θ (1− x)θ−1,

that is C1/m ⇒ B(1, θ). The assertion follows by combining the second part of
Proposition 6.2 with Proposition 4.2. Note that (C1, . . . , CK) is a size-biased per-
mutation of the ordered cycle-lengths. 2

A similar urn scheme as in the Chinese restaurant process is Hoppe’s urn, where
the balls are coloured instead of numbered. The black ball has weight θ and other
balls weight one. A drawn ball is replaced together with one of the same colour ex-
cept the black, which is replaced together with one ball of a colour not already in the
urn. The results in the propositions in this section describe the colour composition
in the urn. For example, the ESF(θ) is the distribution of the composition after m
drawings, and PD(θ) is the limit distribution as m →∞ of the random proportions
arranged in decreasing order of the different colours in the urn.
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