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Abstract

The beach model, which was introduced by Burton and Steif, has many features
in common with the Ising model. We generalize some results for the Ising model
to the beach model, such as the connection between phase transition and a
certain percolation event. The Potts model extends the Ising model to more than
two spin states, and we go on to study the corresponding extension of the beach
model. Using random-cluster model methods we obtain some results on where
in the parameter space this model exhibits phase transition. Finally we study
the beach model on regular trees. Critical values are estimated with iterative
numerical methods. In different parameter regions we will see indications of
both first and second order phase transition.



Acknowledgments
I would like to thank Professor Olle Häggström for supervising this project,
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1 Introduction

The beach model was introduced in 1994 by Burton and Steif, see [4, 5]. It is
well known that a strongly irreducible subshift of finite type in one dimension
has a unique measure of maximal entropy, [21]. The beach model was brought
forth as a counterexample to this in higher dimensions. Burton and Steif showed
that in some part of the parameter space the model has more than one measure
of maximal entropy, called phase transition by analogy with the language of
statistical mechanics.

The beach model was then somewhat enlarged and further studied by Hägg-
ström, [11]. It was shown in [11] that the phenomenon of phase transition was
monotone in the model parameter, thus proving the existence of a critical value
above which there are multiple measures of maximal entropy and below which
there is only one such measure. This is similar to the critical inverse temperature
of the Ising model, and its region of phase transition. The main purpose of this
paper is to look for such similarities between the beach model and the Ising
model. In [23] Wallerstedt examines and shows some other similarities between
the two models, such as the global Markov property for the plus measure and
certain large deviation properties. See also Häggström [14] for some other results
in the same spirit, although in a more general graph context.

The whereabouts of the critical value for the beach model on Zd depends on
the dimension d. In [11] lower and upper limits were given, resulting in rather
broad intervals. However, in [19] Nelander was able to, with a Markov chain
Monte Carlo technique, conjecture better estimates for the critical value for low
dimensions. Here we will investigate the same question for the beach model
on regular trees. The question of phase transition can then be transferred to
the question of the number of solutions to a certain fixed point problem. The
critical values in the now two-dimensional parameter space are then estimated
with iterative numerical methods. In different parameter regions we will see
indications of both first and second order phase transition.

The rest of this paper is organized as follows. The general model setting
together with the necessary concepts and definitions are presented in Section 2.
In Section 3 a short introduction to the Ising model is given, together with
some historical notes. In Section 4 the beach model is defined: first in the way
it was originally defined by Burton and Steif, to give a clear understanding of
its initial purpose, and then in a more general way, thereby reducing the state
space, but instead extending the parameter space. In Section 5 the percolation
properties of the beach model are compared to those of the Ising model. It is
shown that on Z2, like in the Ising model, phase transition is equivalent to ’plus’
percolating in the ’plus measure’. For other (non-planar) graphs, it is shown
that ’plus’ percolates when there is a phase transition, and that the converse
fails. In Section 6 we consider an extension of the beach model analogous to the
usual generalization from the Ising model to the Potts model. The (Fortuin–
Kasteleyn) random-cluster model, modified to the beach model situation, is
introduced. With its help the existence of a critical value for the Potts-like
beach model is shown. In Section 7 the beach model on regular trees is studied,
and here the model can be viewed as having three parameters. We will see
strong indications of where the critical values are located.
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2 Preliminary definitions

Our object of study originates from physical systems with many particles, lo-
cated at the sites of a crystal lattice. But initially we will look at a little more
general set-up and allow more than just lattices. Let G be the set of countably
infinite, locally finite, connected graphs. Take some graph G = (V,E) ∈ G,
where V is the vertex set and E the edge set. Write x ∼ y if the vertices
x, y ∈ V are adjacent. In this case, x and y are also called neighbours and the
edge (or bond) between x and y is denoted by 〈xy〉. One important example
is the case V = Zd (the d-dimensional cubic lattice) with edges drawn between
sites of unit distance; hence x ∼ y whenever |x − y| = 1. Here | · | stands for
the L1-norm, i.e. |x| =

∑d
i=1 |xi| whenever x = (x1, . . . , xd) ∈ Zd. This choice

is natural because then | · | coincides with the graph-theoretical distance. Such
graphs on Zd are denoted (Zd,∼).

A region of the sites (vertices), i.e. a subset Λ ⊂ V , is called finite if its
cardinality |Λ| is finite. The complement of a finite region Λ will be denoted
by Λc = V \ Λ. The boundary ∂Λ of Λ is the set of all sites in Λc which are
adjacent to some site of Λ, i.e. ∂Λ = {x ∈ Λc : ∃ y ∈ Λ such that x ∼ y}.

Let S be a non-empty set called the state space. Typically each site will
be assigned a value from S. A configuration is a map σ : V → S, which to
each vertex x ∈ V assigns a value σ(x) ∈ S, and can in a magnetic set-up be
interpreted as the spin of an elementary magnet at x. Sometimes the value
σ(x) is therefore referred to as the spin at site x. Two configurations are said
to agree on a region Λ ⊂ V , written as “σ ≡ η on Λ”, if σ(x) = η(x) for all
x ∈ Λ. Similarly, we write “σ ≡ η off Λ” if σ(x) = η(x) for all x ∈ Λc. We also
consider configurations in finite regions Λ ⊂ V . A configuration σ : Λ → S is a
restriction of a configuration η : ∆ → S if Λ ⊂ ∆ and σ ≡ η on Λ. We also say
that in this case that η is an extension of σ.

The space of all configurations, called the configuration space, is the prod-
uct space Ω = SV . We equip Ω with the natural underlying σ-field F =
σ(cylinder sets of Ω). As the spins of the system are supposed to be random, we
will consider suitable probability measures µ on (Ω,F). Each such µ is called a
random field. Equivalently, the family X = (X(x), x ∈ V ) of random variables
on the probability space (Ω,F , µ) which describe the spins at all sites is called
a random field.

Definition 2.1 The random object X (or the measure µ) is said to be a Markov
random field if µ admits conditional probabilities such that for all finite Λ ⊂ V ,
all σ ∈ SΛ, and all η ∈ SΛc

we have

µ(X(Λ) = σ|X(Λc) = η) = µ(X(Λ) = σ|X(∂Λ) = η(∂Λ)). (1)

In other words, the Markov random field property says that the conditional
distribution of what we see on Λ, given everything else, only depends on what
we see on the boundary ∂Λ.

A real function f : Ω → R is called local if it depends only on finitely many
spins. For such functions, let ‖·‖ denote the supremum norm ‖f‖ = supσ |f(σ)|.

2.1 Stochastic domination

Suppose that S is a subset of R, so that the elements of S are ordered. The
configurations space Ω is then equipped with a natural partial order ¹ which
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is defined coordinate-wise: For σ, σ′ ∈ Ω, we write σ ¹ σ′ (or σ′ º σ) if
σ(x) ≤ σ′(x) for every x ∈ V . A function f : Ω → R is said to be increasing if
f(σ) ≤ f(σ′) whenever σ ¹ σ′. An event A is said to be increasing if its indi-
cator function 1A is increasing. The following standard definition of stochastic
domination expresses the fact that µ′ prefers larger elements of Ω than µ.

Definition 2.2 Let µ and µ′ be two probability measures on Ω. We say that µ
is stochastically dominated by µ′, or µ′ is stochastically larger than µ, writing
µ ¹D µ′, if for every bounded increasing function f : Ω → R we have µ(f) ≤
µ′(f).

The following fundamental result of Strassen [22] characterizes stochastic dom-
ination in coupling terms.

Theorem 2.3 (Strassen) For any two probability measures µ and µ′ on Ω,
the following statements are equivalent.

(i) µ ¹D µ′

(ii) For all continuous bounded increasing functions f : Ω → R, µ(f) ≤ µ′(f).

(iii) There exists a coupling P of µ and µ′ such that P (X ¹ X ′) = 1.

The equivalence (i) ⇔ (ii) in Theorem 2.3 implies that the relation ¹D of
stochastic domination is preserved under weak limits.

Next we recall a sufficient condition for stochastic domination. This con-
dition is essentially due to Holley [15] and refers to the finite-dimensional case
when |V | < ∞. We also assume for simplicity that S ⊂ R is finite. Hence Ω is
finite. In this case, we call a probability measure µ on Ω connected if, for any
σ, η ∈ Ω such that both σ and η have positive µ-probability, we can move from
σ to η through single-site changes without passing through any element of zero
µ-probability.

Theorem 2.4 (Holley) Let X and X ′ be Ω-valued random elements with con-
nected distributions µ and µ′, and assume that µ′ assigns positive probability to
the maximal element of Ω. If for all x ∈ V , all s ∈ S, µ-a.a. σ ∈ SV \{x} and
µ′-a.a. η ∈ SV \{x} such that σ ¹ η we have

µ(X(x) ≥ s |X(V \ {x}) = σ) ≤ µ′(X ′(x) ≥ s |X ′(V \ {x}) = η),

then µ ¹D µ′.

Definition 2.5 A probability measure µ on Ω is said to have positive correla-
tions if for all bounded increasing functions f, g : Ω → R we have

µ(fg) ≥ µ(f)µ(g). (2)

More or less as a corollary to Holley’s Theorem 2.4 we get the well known
FKG inequality. See [9] for a proof.

Theorem 2.6 (The FKG inequality) Let V be finite, S a finite subset of
R, and µ a probability measure on Ω which is connected and assigns positive
probability to the maximal element of Ω. If µ is monotone, meaning

µ(X(x) ≥ a|X = ξ off x) ≤ µ(X(x) ≥ a|X = η off x)

whenever x ∈ V , a ∈ S, and ξ, η ∈ SV \{x} are such that ξ ¹ η, µ(X = ξ off x) >
0 and µ(X = η off x) > 0, then µ also has positive correlations.

5



Finally we state a simple observation from [17] used later on. It says that if
two probability measures have the same marginal distributions and are compa-
rable in the sense of stochastic domination, then they are in fact equal.

Proposition 2.7 Let V be finite or countable, and let µ and µ′ be two proba-
bility measures on Ω = SV satisfying µ ¹D µ′. If, in addition, µ(X(x) ≤ r) =
µ′(X(x) ≤ r) for all x ∈ V and r ∈ S then µ = µ′.

Proof. Let P be a coupling of µ and µ′ such that P (X ¹ X ′) = 1 which exists
by Theorem 2.3. Writing Q for the set of rational numbers, we have for each
x ∈ V

P (X(x) 6= X ′(x)) = P (X(x) < X ′(x)) ≤
∑

r∈Q
P (X(x) ≤ r,X ′(x) > r)

=
∑

r∈Q
(P (X(x) ≤ r)− P (X ′(x) ≤ r))

= 0.

Summing over all x ∈ V we get P (X 6= X ′) = 0, whence µ = µ′ by the coupling
inequality ‖µ− µ′‖TV ≤ P (X 6= X ′). ¤
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3 The Ising model

The Ising model on a graph G = (V, E) is a certain random assignment of
+1’s and −1’s to the vertices of G. It was introduced in the 1920s as a model
for ferro-magnetism, and is today the most studied of all Markov random field
models; see e.g. [8, 16] for introductions and some history. In our setting we
have S = {−1, 1}. A probability measure on Ω = SV is said to be a Gibbs
measure for the Ising model on G at inverse temperature β ≥ 0 if it is Markov
and for all finite Λ ⊂ V and all σ ∈ SΛ, η ∈ S∂Λ we have

µ(X(Λ) = σ|X(∂Λ) = η)=
1
Z

exp


β




∑

x, y∈Λ:
x ∼ y

σ(x)σ(y) +
∑

x∈Λ, y∈∂Λ:
x ∼ y

σ(x)η(y)







Here Z is a normalizing constant which depends on β, Λ and η but not on σ.
For β = 0 (“infinite temperature”) the spin variables are independent under µ,
but as soon as β > 0 the probability distribution starts to favour configurations
with many neighbour pairs of aligned spins. This tendency becomes stronger
and stronger as β increases.

The existence of Gibbs measures on (Zd,∼) can be established using stochas-
tic domination of Gibbs measures on an increasing sequence of finite regions
growing to Zd with suitable boundary conditions. It is well known that the
existence of more than one Gibbs measure, called phase transition by analogy
with the language of statistical mechanics, is increasing in β. This was orig-
inally proved using so-called Griffiths inequalities (see e.g. [17]); the modern
approach is based on the random-cluster model, see [13]. The following result
is an immediate consequence.

Theorem 3.1 For the Ising model on the integer lattice Zd of dimension d ≥ 2
there exists a critical inverse temperature βc ∈ [0,∞) (depending on d) such
that for β < βc the model has a unique Gibbs measure while for β > βc there
are multiple Gibbs measures.

For Z2 the critical value has been found to be βc = 1
2 log(1 +

√
2), see [20].

Later it was also shown in [1] that the model has a unique Gibbs measure at
the critical value β = βc. For higher dimensions a rigorous calculation of the
critical value is beyond current knowledge. It is believed that uniqueness holds
at criticality in all dimensions d ≥ 2, but so far this is only known for d = 2 and
d ≥ 4, see [2].

Phase transition can in two dimensions be completely characterized by the
following percolation phenomenon. The result is due to Coniglio et al. [7].

Theorem 3.2 For the Ising model on the square lattice Z2 at inverse tempera-
ture β, the µ+

β -probability of having an infinite plus-cluster is 0 in the uniqueness
regime β ≤ βc, and 1 in the non-uniqueness regime β > βc.

Here µ+
β is the limiting Gibbs measure obtained by letting all boxes Λn =

[−n, n]× [−n, n] in the sequence (Λn)n≥1 have a complete +1-boundary.
We shall see that the beach model also possesses this equivalence of non-

uniqueness and percolation in two dimensions. For d ≥ 3, or for non-planar
graphs in general, the corresponding sharp equivalence is no longer true in
either model. This will be shown in Section 5.
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4 The beach model

The beach model was introduced by Burton and Steif, see [4] and [5], as an
example of a strongly irreducible subshift of finite type, which has for some
choice of the model parameter more than one measure of maximal entropy. The
model was somewhat enlarged and further studied by Häggström, [11]. It was
shown in [11] that the parameter has a critical value above which there is more
than one measure of maximal entropy and below which there is only one such
measure. This is similar to the phase transition phenomenon for the Ising model.
The whereabouts of this critical value in the Zd case could only be given as a
rather broad interval, with endpoints depending on the dimension d.

4.1 The model as a subshift of finite type

An automorphism of a graph G is a bijective mapping γ : V → V such that
x ∼ y ⇔ γx ∼ γy. Assume for now that G is a transitive graph, i.e. for
any x, y ∈ V there exists an automorphism γ such that γx = y. Each such
automorphism also induces a transformation of the configuration space Ω. One
important class of automorphisms are the translations of the integer lattice
V = Zd, γyx = x + y, y ∈ Zd. The associated translation group acting on
Ω is then given by Tyσ(x) = σ(γyx) = σ(x + y), x, y ∈ Zd. In particular,
any constant configuration is translation invariant. Similarly, we can speak of
periodic configurations which are invariant under Ty.

Definition 4.1 Let σi : Γi → S, 1 ≤ i ≤ K, be a finite set H of configurations
with Γi ⊂ Zd finite for each 1 ≤ i ≤ K. The subshift of finite type (in d dimen-
sions) corresponding to H is the set X ⊂ SZ

d

consisting of all configurations
σ : Zd → S such that for all y ∈ Zd, it is not the case that Tyσ is an extension of
some σi (The σi’s should be thought of as the disallowed finite configurations).

Subshifts of finite type (SOFTs) are shift invariant, i.e. σ ∈ X and y ∈ Zd

implies Tyσ ∈ X.
A configuration σ̃ : Γ → S is said to be compatible (with X) if ∃σ ∈ X such

that σ̃ is a restriction of σ.

Definition 4.2 Let X be a SOFT. X is strongly irreducible if there is an r ≥ 0
such that whenever we have two finite compatible configurations σ1 : Γ1 → S
and σ2 : Γ2 → S and the distance between Γ1 and Γ2 is greater than r, there is
an σ ∈ X that is an extension of both σ1 and σ2.

The next definition gives a measure of the degree of complexity of a SOFT.
Let Λn = [−n, n]d and Xn = {σ̃ : Λn → S with σ̃ compatible}. Further we let
Nn = |Xn| and finally X(σ̃) = {σ ∈ X : σ is an extension of σ̃}.
Definition 4.3 The topological entropy of X is

H(X) = lim
n→∞

log Nn

|Λn| .

Suppose that µ is a translation invariant probability measure on X. Then the
measure theoretic entropy of µ is

H(µ) = lim
n→∞

− 1
|Λn|

∑

σ̃∈Xn

µ(X(σ̃)) log µ(X(σ̃)).
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Both of these limits exist by sub-additivity. Clearly for any such µ we have
H(µ) ≤ H(X). It is in fact well known that H(X) = supµ H(µ) where the
supremum is taken over all translation invariant probability measures on X.
Moreover, the supremum is achieved at some measure (see [18]). In the case of
strong irreducibility there is in 1 dimension always a unique measure of maximal
entropy. However, for d ≥ 2 there sometimes exist more than one measure of
maximal entropy. By analogy with the Ising model we say that we have a phase
transition when multiple measures of maximal entropy exist. Here it will be
exemplified by the beach model.

The following characterization of measures with maximal entropy for strongly
irreducible SOFTs is from [4].

Proposition 4.4 Let X be a strongly irreducible SOFT for which the disallowed
finite configurations consists only of pairs of neighbours. Let µ be a translation
invariant probability measure on X. Then the following statements are equiva-
lent.

(i) µ is a measure of maximal entropy.

(ii) The conditional distribution of µ on any finite set Γ given the configuration
on ∂Γ is µ-a.s. uniform over all configurations on Γ which (together with
configuration on ∂Γ) extend the configuration on ∂Γ.

We are now ready to describe the beach model.

Definition 4.5 Take d ≥ 2, M ∈ {2, 3, . . .} and let S′ = {−M,−M+1, . . . ,−1,
1, . . . , M − 1,M}. The beach model in d dimensions with parameter M is the d-
dimensional SOFT where a negative in S′ may not sit next to a positive, unless
they both have one as their absolute value.

It is the interpretation in two dimensions of the symbols representing altitude
above the sea level that has given rise to the name of the model; the rules of
the model prevent the shores from being too steep.

The beach model is a SOFT satisfying the conditions of Proposition 4.4. This
tells us that for the beach model, looking for measures of maximal entropy, is the
same as looking for measures with uniform conditional distributions. So assume
µ satisfies this condition and it is now a question of existence and uniqueness
of such a µ. In [4] Burton and Steif showed that in d ≥ 2 dimensions the beach
model exhibits phase transition if the parameter M is large enough:

Proposition 4.6 Consider the beach model and let d ≥ 2. If

M > 4e28d

then there are exactly 2 ergodic measures of maximal entropy in d dimensions.

4.2 The model with a continuous parameter

In the above setting, the parameter of the model, M , is integer-valued. To
extend the parameter space, reduce the state space S′ to S = {−2,−1, 1, 2}
where the former spins 2, 3, . . . , M now are represented by the 2 and similarly for
the negative spins. To keep what once were uniform conditional distributions,
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we let the measure put weights (M−1), 1, 1, (M−1) respectively on the new
spins. The model parameter M can now take all real values in (1,∞).

Consider some graph G = (V,E) ∈ G. As before, we say that a configuration
σ ∈ {−2,−1, 1, 2}Λ with Λ ⊂ V is BM-feasible if for each neighbour pair x ∼ y
we have σ(x)σ(y) ≥ −1.

Definition 4.7 A probability measure µ on SV is said to be a Gibbs measure
for the beach model on G = (V,E) with parameter M > 1 if for all finite Λ ⊂ V ,
all σ ∈ SΛ and µ-a.a. η ∈ SΛc

we have

µ(X(Λ) = σ|X(Λc) = η) =
1
Z

(M − 1)n−2(σ)+n+2(σ)1{(σ∨η) BM-feasible}. (3)

Here n−2(σ) and n+2(σ) are the number of −2’s and +2’s in σ. The reason why
we use the quantifier ’µ-a.a.’ rather than ’all BM-feasible’ for the set of outer
configurations is that certain BM-feasible configurations η may cause (σ ∨ η)
to be not BM-feasible for every σ ∈ SΛ. Note that a beach model Gibbs mea-
sure, conditioned on the configuration η outside Λ, only depends on η through
the condition that (σ ∨ η) should be BM-feasible, and that this in turn only
involves the configuration on the region boundary ∂Λ. For that reason it is
sometimes more convenient to simply condition on {X(∂Λ) = η(∂Λ)} rather
than on {X(Λc) = η(Λc)}, getting the same conditioned measure. To conclude,
a beach model Gibbs measure has the Markov random field property (1).

Next we construct Gibbs measures for the beach model on G. The following
lemma is useful. Let Λ ⊂ V be finite and for any η ∈ SΛc

, write µΛ,η for the
beach model measure on Ω that agrees with η outside Λ and else follows the
right-hand side of (3). It could be argued that such a measure should be called
µM

Λ,η to stress the fact that the parameter for the measure is M , but we will
suppress this dependence on M .

Lemma 4.8 Let Λ ⊂ V be finite, and let η1 and η2 be two spin configurations
on Λc satisfying η1 ¹ η2. Then we have

µΛ,η1 ¹D µΛ,η2 .

Proof. (Sketch) The idea is to use Holley’s Theorem 2.4. We need to check for
all x ∈ Λ, all s ∈ {−2,−1, 1, 2} and all η ∈ SΛc

that µΛ,η(X(x) ≥ s|X(Λ\{x}) =
σ) is increasing in σ. But this could easily be done. Here is an example when
s = 2.

µΛ,η(X(x) ≥ 2|X(Λ \ {x}) = σ) =





0 if σ(∂{x}) contains −1 or −2,
M−1
M+1 if σ(∂{x}) ≡ 1,
M−1

M otherwise

This conditional probability is increasing in σ, and so are the similar expressions
for the cases s = −2,−1, 1. The claim in the lemma follows. ¤

Let (Λn)∞n=1 be an increasing sequence of finite subsets of V converging to
V in the sense that each x ∈ V is in all but finitely many of the Λn’s. We refer
to such a sequence as an exhaustion of G. Fix a vertex o ∈ Λ1 called the origin.

Let µ+,n be the probability measure on SV corresponding to taking X(Λc
n) ≡

2 and picking X(Λn) according to (3) with Λ = Λn and η ≡ 2. Then these
measures are stochastically ordered:
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µ+,1 ºD µ+,2 ºD · · · . (4)

This follows from Lemma 4.8 because µ+,n could be obtained from µ+,n+1 by
conditioning on the increasing event that X ≡ 2 on Λn+1 \ Λn.

We see (by compactness of {−2,−1, 1, 2}V ) that the sequence (µ+,n)∞n=1 has
a limit. This limit, called the ’plus measure’, is denoted µ+. To see that this
is a Gibbs measure for the beach model, we need to check for any finite Λ ⊂ V
and any η ∈ S∂Λ that µ+ satisfies (3). This however, is immediate from the
fact that the same property holds for µ+,n for each n which is large enough for
Λ ∪ ∂Λ to be contained in Λn.

The limiting measure µ+ is independent of the choice of exhaustion. Assume
(Λ′)∞n=1 is another exhaustion of G with measures µ′+,n and limit µ′+, and we
will see that we must have µ+ = µ′+. We are done if it can be established that
µ+ ¹D µ′+, because then by symmetry µ′+ ¹D µ+ implying µ+ = µ′+. In fact, it
is enough to show µ+ ¹D µ′+,n, since stochastic domination is preserved under
weak limits. So fix n and find m0 big enough so that Λm ⊃ Λ′n for all m > m0.
Then µ+,m ¹D µ′+,n, which yields the desired domination upon letting m →∞.
The result is summarized as follows.

Proposition 4.9 The limiting probability measure

µ+ = lim
n→∞

µ+,n

on {−2,−1, 1, 2}V exists and is a Gibbs measure for the beach model on G. The
limit is independent of the choice of exhaustion.

By the symmetry of the model, we of course have a measure analogous to µ+,
the ’minus measure’ µ−, obtained with boundary condition −2 rather than 2.
Now, from Lemma 4.8 we have

µ−,n ¹D µΛn,η ¹D µ+,n (5)

for any η ∈ Ω and n ∈ N. Let µ be any Gibbs measure for the beach model with
parameter M . Taking the average

∫
µ(dη) in (5), we obtain µ−,n ¹D µ ¹D µ+,n,

and in the limit
µ− ¹D µ ¹D µ+ (6)

where µ is any beach model Gibbs measure. Here we see that µ− and µ+ play
a special role and are extreme in the sense of stochastic ordering.

By tail triviality of a measure µ on (Ω,F) we mean the following. For some
ordering of the vertices V = {v1, v2, . . .}, let Fn = σ(X(vn+1), X(vn+2), . . .)
and let T = ∩nFn. In words, T is the collection of events that do not alter
when changing a finite number of spins. µ is said to have trivial tail if for all
events A ∈ T , either µ(A) = 0 or µ(A) = 1. To check that T does not depend
on the vertex order, let v′1, v

′
2, . . . be some other ordering and let π denote the

permutation defined by v′π(n) = vn, n ∈ N. If F ′n = σ(X(v′n+1), X(v′n+2), . . .)
and T ′ = ∩nF ′n, then we will show T = T ′. Take some event A 6∈ T . Then
there exist some m such that A 6∈ Fm. Define M = max(π(1), . . . , π(m)). Then
{v1, . . . , vm} ⊂ {v′1, . . . , v′M} and therefore F ′M ⊂ Fm. Thus A 6∈ F ′M and
obviously A 6∈ T ′. This shows T ′ ⊂ T and by symmetry T = T ′ follows.

The following properties of µ+ will be useful later on.
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Proposition 4.10 The measure µ+ has positive correlations.

Proof. Since the inequality (2) is preserved under rescaling and addition
of constants to f and g, µ has positive correlations whenever µ ¹D µ′ for
any probability measure µ′ with bounded increasing Radon-Nikodym density
relative to µ. Theorem 2.3 thus shows that µ has positive correlations whenever
µ(fg) ≥ µ(f)µ(g) for all continuous bounded increasing functions f and g.
Hence, the property of positive correlations is also preserved under weak limits.
Since µ+,n has positive correlations from Theorem 2.6 and Lemma 4.8, the claim
follows. ¤

Proposition 4.11 Let G ∈ G be a transitive graph. The measure µ+ is then
automorphism invariant and has trivial tail.

Proof. From Proposition 4.9 the measure µ+ is independent of the choice of
exhaustion. To any automorphism could the corresponding change of exhaustion
be made, thus making it clear that µ+ is invariant under automorphisms.

To show tail triviality for µ+ assume, to get a contradiction, that there
exists some tail event A with probability α = µ(A) such that 0 < α < 1.
Let µ1 = 1

αµ+|A and µ2 = 1
1−αµ+|Ac . A moments though reveals that these

measures are Gibbs measures as the restriction to a tail event does not influence
the conditional probabilities on finite regions. Moreover, we see that µ+ is a
convex combination of the other two Gibbs measures; µ+ = α ·µ1 +(1−α) ·µ2.
For any increasing event B we know from (6) that

αµ1(B) + (1− α)µ2(B) ≤ (α + 1− α)µ+(B) = µ+(B)

with equality if, and only if, µ1(B) = µ2(B) = µ+(B). But we already know
that equality holds, so substituting B for {X(x) ≥ r}, x ∈ V , r ∈ S and using
Proposition 2.7 gives µ1 = µ2 = µ+. We thereby have the desired contradiction,
because for example µ1(A) = 1 while µ+(A) = α < 1. ¤

Let {X(x) = +} denote the event {X(x) ∈ {+1, +2}} for x ∈ V and X ∈
SV , and define the event {X(x) = −} analogously.

Proposition 4.12 For the beach model on a graph G ∈ G with parameter M ,
the following statements are equivalent.

(i) There is more than one Gibbs measure;

(ii) µ+ 6= µ−;

(iii) µ+(X(o) = +) > 1
2 ;

(iv) ∃ ε > 0 such that µ+,n(X(o) = +) ≥ 1
2 + ε for all n.

Here we will only show (i)⇔(ii)⇐(iii)⇔(iv), and postpone the missing link
(ii)⇒(iii) to Section 6.2.

Proof of (i)⇔(ii)⇐(iii)⇔(iv) in Proposition 4.12. The implications
(iv)⇒(iii) and (ii)⇒(i) are immediate. (i)⇒(ii) follows from the relation (6).
(iii)⇒(iv) is obvious observing from (4) that µ+,n(X(o) = +), n = 1, 2, . . . is a
decreasing sequence with a limit > 1/2. (iii)⇒(ii): By ±-symmetry µ−(X(o) =
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+) = µ+(X(o) = −) = 1 − µ+(X(o) = +) < 1/2, so µ− and µ+ differ at the
origin. ¤

It is also known that the existence of more than one Gibbs measure is in-
creasing in M . The following is an immediate consequence.

Theorem 4.13 For any graph G ∈ G there exists a critical value Mc = Mc(G)∈
[1,∞] such that for M < Mc we have that the beach model on G with parameter
M has a unique Gibbs measure whereas for M > Mc there are multiple Gibbs
measures.

A proof using a random-cluster approach can be found in [14], but also in
Theorem 6.14 below for a somewhat more general model. For G = (Zd,∼), this
result was first obtained by Häggström [11]. There the critical value Mc(Zd)
was shown to belong to the interval

(
2d2 + d + 1
2d2 + d− 1

, exp{22d−2 log(1 +
√

2)}
)

. (7)

For d = 2, this amounts to the interval (1.222, 33.971), and in fact simulations
indicate that Mc(Z2) ∈ (2.1, 2.2) see [19].
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5 Percolation

Consider again a countably infinite (and locally finite) graph G = (V,E). We
designate each vertex a value of either 0 or 1. We call the sites assigned 1 open
and those assigned 0 closed. Let Ωs = {0, 1}V be the set of configurations and
consider a configuration X ∈ Ωs, obtained in some random way. We say that
there is an open path in X from x ∈ V to y ∈ V if there is some path from x to
y in which all vertices are open. This event is denoted {x ↔ y}. We also write
{x ↔∞} if x is connected to an open path of infinite length.

Bernoulli percolation is a natural way of assigning the open and closed ver-
tices. Each vertex is then open with probability p and closed with probability
1− p. This is done independently for every vertex. The corresponding measure
ψp on (Ωs,Fs) is thus a product measure:

ψp =
∏

x∈V

πx (8)

where πx is given by

πx(X(x) = 0) = 1− p, πx(X(x) = 1) = p

for X ∈ Ωs. Fs is the σ-field generated by the finite-dimensional cylinders of
Ωs. The percolation probability is defined θ(p) = ψp(o ↔∞). A simple coupling
argument shows that θ(p) is increasing in p and we define the critical probability
as

pc = sup{p : θ(p) = 0}. (9)

For more on percolation, see [10].

5.1 Agreement percolation

We consider again the general setting of Section 2. Suppose µ is a random field
and η ∈ Ω a fixed configuration. Let {x η←→ ∞} denote the event that x ∈ V
belongs to an infinite cluster of the random set R(η) = {y ∈ V : X(y) = η(y)}.
This idea can also be extended to more than one such fixed configuration η. Let
H = {ηi ∈ Ω, i = 1, . . . , N} be a finite set of fixed configurations. As above
we consider the event {x H←→ ∞} that x ∈ V belongs to an infinite cluster
of the set R(H) = {y ∈ V : X(y) = η(y) for some η ∈ H}. Moreover, we
say that µ exhibits agreement percolation for H if µ(x H←→ ∞) > 0 for some
x ∈ V . To visualize such an agreement, it may be convenient to think of a
reduced description of µ in terms of its image under the map sH : Ω → Ωs,
which describes local agreement and disagreement with H, and is defined by

(sH(σ))(x) =
{

1 if σ(x) = η(x) for some η ∈ H,
0 otherwise

With this mapping, we can write {x H←→∞} = s−1
H {x ↔∞}.

5.2 Looking at signs only

We will investigate how agreement percolation is related to phase transition in
the beach model. It is natural to consider events like the ’plus sites’ percolate.
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For this purpose we take η1 ≡ +1 and η2 ≡ +2 as and form H+ = {η1, η2}.
Now agreement with H+ is the same as the considered sites having plus signs.
We write {x +←→∞} for the event that x belongs to an infinite plus cluster, i.e.

{x +←→∞} = {x H+

←→∞}.
For every configuration ξ ∈ Ω we can talk about the sign configuration

η ∈ {0, 1}V = Ωs of ξ, by identifying plus sites with 1 and minus sites with 0:
η = sH+(ξ). Likewise, any measure µ on (Ω,F) induces a measure ν on (Ωs,Fs)
in the same way:

ν(Y = η) = µ(X ∈ s−1
H+(η)),

where Y ∈ Ωs and X ∈ Ω. The definition for ν is written shorter as ν(η) =
µ(s−1

H+(η)). In particular, every Gibbs measure for the beach model µ induces
a corresponding ’sign measure’ ν = µ ◦ s−1

H+ .

Lemma 5.1 Let µ1 and µ2 be two measures on (Ω,F) and let ν1 and ν2 be
their corresponding induced measures on (Ωs,Fs). Then

µ1 ¹D µ2 ⇒ ν1 ¹D ν2.

Proof. Assume µ1 ¹D µ2. From Strassen’s Theorem 2.3 we know there exists
some coupling P such that P (X1 ¹ X2) = 1 and X1 ∼ µ1, X2 ∼ µ2. Let
Y1 = sH+(X1) and Y2 = sH+(X2). Then, since sH+ preserves order, we have
that P (Y1 ¹ Y2) = 1 and also that Y1 ∼ ν1, Y2 ∼ ν2. Using Strassen’s Theorem
once again we find that ν1 ¹D ν2. ¤

Let ν+,n be the measure corresponding to µ+,n for n ∈ N and define ν+ as
the measure corresponding to µ+. From Lemma 5.1 and (4) it follows that

ν+,1 ºD ν+,2 ºD · · · .
As before, we see that the sequence (ν+,n)∞n=1 has a limit, call it ν+,∞. Actually,
ν+,∞ and ν+ are the same measure as can be seen in the following calculation:
For any A ∈ Fs,

ν+,∞(A) = lim
n→∞

(µ+,n ◦ s−1
H+)(A)

= lim
n→∞

µ+,n(s−1
H+(A)) = µ+(s−1

H+(A))

= ν+(A).

Proposition 5.2 Let G ∈ G be a transitive graph. Then ν+ is automorphism
invariant, has positive correlations and has trivial tail.

Proof. The three properties are inherited from µ+, for which they are valid,
see Proposition 4.10 and 4.11. Firstly automorphism invariance follows, since
if T : Ω → Ω is any automorphism then T−1 and s−1

H+ commute. Secondly,
positive correlations follows since the mapping sH+ is monotone. Thirdly, tail
triviality follows because ν+ has a smaller tail σ-field than µ+: Let X ∈ Ω
be a beach model realization and let Y = sH+(X) be the sign configuration. If
A′ ∈ T ′ ⊂ Fs is a tail event, then for each n we can determine whether A′ occurs,
i.e. Y ∈ A′, by observing the signs Y (vn), Y (vn+1), . . .. Let A = s−1

H+(A′) and
note that we, for every n, know if A occurs by just observing X(vn), X(vn+1), . . ..
Hence, A is a tail event for (Ω,F) and ν+(A′) = µ+(s−1

H+(A′)) = µ+(A) =
0 or 1. ¤
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5.3 Phase transition implies agreement percolation

For the Ising model, it is known that in the non-uniqueness regime where we
have phase transition, the ’plus measure’ of the Ising model exhibits agreement
percolation for the ground state with all sites ≡ +1 [7].

How can one establish such a result? Coniglio et al. [7] developed a conve-
nient criterion which can be used for general Markov random fields. A somewhat
modified version is as follows.

Theorem 5.3 Let (V, E) be a locally finite graph, µ a Markov random field on
Ω = SV , and H ⊂ Ω a finite set of configurations. Suppose there exists a con-
stant c ∈ R and a local function f : Ω → R depending only on the configuration
in a connected set ∆, such that µ(f) > c but

µ(f |X ≡ ξ on ∂Γ) ≤ c (10)

for all finite connected sets Γ ⊃ ∆ and all ξ ∈ Ω with sH(ξ) ≡ 0 on ∂Γ. Then
µ(∆ H←→∞) > 0, i.e. µ exhibits agreement percolation for H.

Proof. Suppose by contraposition that µ(∆ H←→ ∞) = 0. For any ε > 0
we can then choose some finite Λ ⊃ ∆ such that µ(∆ H←→ Λc) < ε. For
ξ 6∈ {∆ H←→ Λc}, there exists a connected set Γ such that ∆ ⊂ Γ ⊂ Λ and
sH(ξ) ≡ 0 on ∂Γ; we simply let Γ be the union of ∆ and all H-clusters meeting
∂∆. We let Γ(ξ) be the largest such set. For ξ ∈ {∆ H←→ Λc} we put Γ(ξ) = ∅.
Then, for each finite connected set Γ 6= ∅, the event {ξ : Γ(ξ) = Γ} depends only
on the configuration in Λ \ Γ, whence by the Markov property µ(f |Γ(·) = Γ) is
an average of the conditional probabilities that appear in the assumption (10).
From this we obtain

µ(f) ≤ cµ(Γ(·) 6= ∅) + µ(|f |1{Γ(·)=∅}) < c + ε‖f‖.

Letting ε → 0 we find that µ(f) ≤ c, contradicting our assumption. ¤
Next we use the theorem above in the case of the beach model. One crucial

set in Theorem 5.3 is {ξ : sH(ξ) ≡ 0 on ∂Γ for all finite Γ ⊃ ∆}. With H = H+

this set corresponds to configurations with just −1 and −2 outside ∆.

Theorem 5.4 If we have a phase transition for the beach model on G with
origin o, then the ’plus sites’ percolate in the ’plus measure’:

µ− 6= µ+ =⇒ µ+(o +←→∞) > 0.

Proof. Assuming µ− 6= µ+ we have from Proposition 4.12 that µ+(X(o) =
+) > 1/2. So, apply Theorem 5.3 with µ = µ+, H = H+, c = 1/2, f =
1{X(o)=+} and ∆ = {o}. Now check the condition (10). From Lemma 4.8
regarding beach model measures with given boundary we get

µ+(X(o) = +|X ≡ ξ on ∂Γ) ≤ µ+(X(o) = +|X ≡ −1 on ∂Γ) ≤ 1
2
,
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where the last inequality comes from the following calculation.

µ+(X(o) = +|X ≡ −1 on ∂Γ) = 1− µ+(X(o) = −|X ≡ −1 on ∂Γ) =
1− µ+(X(o) = +|X ≡ +1 on ∂Γ) ≤ 1− µ+(X(o) = +|X ≡ −1 on ∂Γ).

Here we have used the ±-symmetry and again Lemma 4.8. The requirements
of Theorem 5.3 are thus fulfilled and we conclude that µ+(o +←→∞) > 0. ¤
The intuition behind the theorem is clear: If the plus sites do not percolate
in the plus measure, there should a.s. be a contour of minuses surrounding the
origin. But then, the origin itself could not possibly have a bias towards positive
sign due to the Markov property.

5.4 Does agreement percolation imply phase transition?

A natural question is now if the converse of Theorem 5.4 holds. It turns out the
answer depends on the graph. Taking the example G = (Zd,∼) we will show
that in d = 2 dimensions the converse of Theorem 5.4 holds whereas for d = 3
dimensions it does not. We begin with the former statement.

5.4.1 The converse is true

Theorem 5.5 For the beach model on (Z2,∼) phase transition is equivalent to
agreement percolation:

µ− 6= µ+ ⇐⇒ µ+(o +←→∞) > 0. (11)

To prove this theorem we need some classical results on the number of infinite
clusters for percolation models. First a definition.

Definition 5.6 A probability measure µ on {0, 1}V , with V a countable set, is
said to have finite energy if, for every finite region Λ ⊂ V ,

µ(X ≡ η on Λ|X ≡ ξ off Λ) > 0

for all η ∈ {0, 1}Λ and µ-a.e. ξ ∈ {0, 1}Λc

.

The beach model lacks the finite energy property as −1 cannot sit next to +2
for example. However, looking at the signs only will give a model with finite
energy.

Theorem 5.7 (The Burton-Keane uniqueness theorem) Let µ be a prob-
ability measure on {0, 1}Zd

which is translation invariant and has finite energy.
Then, µ-a.s., there exists at most one infinite open cluster.

See [3] for a proof.
So, we can have at most one open cluster, and for obvious reasons, at most

one closed cluster. Can they coexist? On Z2 (which is planar) it turns out they
cannot. The following theorem is quoted from [9]. Their proof is based on a
geometrical argument of Yu Zhang and of course Theorem 5.7.

Theorem 5.8 Let µ be an automorphism invariant probability measure on {0, 1}Z2

with finite energy, positive correlation and trivial tail. Then

µ(∃ infinite open cluster, ∃ infinite closed cluster) = 0.
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Proof of Theorem 5.5. We only need to show the ⇐-direction. Assume, to
get a contradiction that µ− = µ+ and µ+(o +←→∞) > 0. Focusing just on signs
we then have ν− = ν+ and ν+(o ←→ ∞) > 0. Consider the event that there
exists an infinite open cluster. This is a tail event and from Proposition 5.2
ν+ has trivial tail, and therefore this event must have ν+-probability 1. ν+

coincides with ν− and by symmetry, an infinite closed cluster exists ν+-a.s.
This contradicts Theorem 5.8; the assumptions of this theorem are satisfied by
Proposition 5.2. ¤

5.4.2 The converse is false

The equivalence of non-uniqueness and percolation just observed on Z2 cannot
be expected to hold for non-planar graphs. Consider, for example, the beach
model on Z3. For M = 1 uniqueness certainly holds, and plus-percolation is
here equivalent to Bernoulli percolation on Z3 with parameter 1/2. But a result
of [6] states that pc(Z3) < 1/2. The plus spins thus percolate for M = 1. In view
of the following theorem, this is still the case for sufficiently small M > 1, so
that plus-percolation does occur in a non-trivial part of the uniqueness region.

Theorem 5.9 There is some M ∈ (1,Mc(Z3)) such that the plus measure µ+

for the beach model on G = (Z3,∼) exhibits agreement percolation for H+,

∃M : 1 < M < Mc(Z3) and µ+(o +←→∞) > 0.

Proof. Note first from (7) that Mc(Z3) > 1. We have µ+(o +←→ ∞) =
ν+(o ←→∞), and since {o ←→∞} is an increasing event on Ωs we are done if
we can find M < Mc(Z3) and p > pc(Z3) such that

ψp ¹D ν+, (12)

because for such a p we see from (9) that ψp(o ←→ ∞) > 0. To establish (12)
apply Holley’s Theorem 2.4 to the projections of ψp and ν+ on {0, 1}Λn , to
get stochastic domination between the projected measures. The full stochastic
domination (12) follows easily. Let Λ∗ be short-hand for Λ \ {o}. We need to
show that

ψp(X(o) = 1|X(Λ∗n) = ξ) ≤ ν+(Y (o) = 1|Y (Λ∗n) = η) (13)

for all ξ, η ∈ {0, 1}Λ∗n for which ξ ¹ η. The left-hand side equals p, of course.
For the right-hand side, let X be a random field following µ+. Then

ν+(Y (o) = 1|Y (Λ∗n) = η) = µ+(X(o) = +|sH+(X(Λ∗n)) = η)
≥ µ+(X(o) = 1|sH+(X(Λ∗n)) = η). (14)

We name some relevant events: Let A = {X(o) = 1}, B = {sH+(X(Λ∗n)) =
η} and C = {|X(∂{o})| ≡ 1}. In the beach model every site has, given the
configuration everywhere else, probability at least 1/M to take value in {−1, 1}.
Therefore

µ+(C|B) ≥ 1− 2d(1− 1
M

),
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because the origin has 2d neighbours in Zd. Continuing from (14) we get

µ+(A|B) ≥ µ+(A ∩ C|B) = µ+(A|C,B) · µ+(C|B)

≥ 1
M + 1

· (1− 2d(1− 1
M

)), (15)

and combining (14) and (15) yields

ν+(Y (o) = 1|Y (Λ∗n) = η) ≥ 1
M + 1

· (1− 2d(1− 1
M

)). (16)

The right-hand side of (16) approaches 1/2 as M ↘ 1, and since pc(Z3) < 1/2,
we can find some p > pc(Z3) satisfying (13) for M small enough. Now letting
n →∞ will give (12) ending the proof. ¤
It can be remarked that pc(Zd) is decreasing in the dimension d, so Theorem 5.9
is easily extended to higher dimensions d ≥ 3.
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6 The multi-coloured beach model

As mentioned before, the beach model and the Ising model have many similar
properties. For example, every result above regarding the beach model has its
Ising model analogue and they are all well known. The Potts model is the
extension of the Ising model where, instead of having only two spin states (−
and +), there are q different spin states (1, 2, . . . , q), where q ∈ {2, 3, . . .}. The
Potts model with q = 2 corresponds to the Ising model. In [5] Burt and Steif
introduced a corresponding generalization of the beach model. Let us look at it
here, in the set-up with the reduced state space.

Let G = (V, E) ∈ G be some graph. Mark each vertex x ∈ V with σx =
(cx, jx) from the state space S = {1, 2, . . . , q} × {1, 2}. The cx will sometimes
be referred to as the colour of the vertex x and the jx as its intensity. A typical
configuration σ ∈ SV = Ω is a colouring of the vertices with different intensities.
A configuration σ = (c, j) ∈ Ω is said to be a BM-feasible configuration if for
x, y ∈ V ,

x ∼ y ⇒ {cx = cy} ∨ {jx = jy = 1}.
Hence, in a BM-feasible configuration two neighbouring sites may have different
colour only if they both have the lower intensity 1.

Let as before F = σ(cylinder sets of Ω).

Definition 6.1 A probability measure µ on (Ω,F) is said to be a Gibbs measure
for the multi-coloured beach model on G with parameters q ∈ {2, 3, . . .} and
M > 1 if for all finite Λ ⊂ V , all σ ∈ SV and µ-a.a. η ∈ SΛc

we have

µ(X(Λ) = σ|X(Λc) = η) =
1
Z

(M − 1)n2(σ)1{(σ∨η) BM-feasible}. (17)

Here n2 is the number of vertices with the intensity 2. We see that µ has the
Markov random field property (1) for the same reason as for the beach model
defined in Definition 4.7. Note also that q = 2 in the model above would give
a model equivalent to the beach model defined in Section 4 with ’colours’ −
and +. In order to prove the existence of such measures, we will need the
beach-random-cluster model (Section 6.1), so we will postpone this matter for
a moment. However, for finite graphs, there is no problem of existence:

For a finite graph G = (V, E), let µM
q be the Gibbs measure for the q-coloured

beach model with parameter M , i.e. µM
q is the measure on SV which to each

σ ∈ SV assigns probability

µM
q (σ) =

1
Z

(M − 1)n2(σ)1{σ is BM-feasible},

where again Z is a normalizing constant.

6.1 The random-cluster representation

The Fortuin–Kasteleyn random-cluster model has turned out to be of great
value in analyzing the phase transition behavior of Ising and Potts models.
Here we will look at a variant of the random-cluster model for the beach model,
introduced in [13]. We start by defining it for finite graphs.
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Let the graph G = (V, E) be finite. For a site configuration ξ ∈ {0, 1}V,
define the bond configuration ξ? ∈ {0, 1}E by letting

ξ?(e) =
{

1 if at least one of e’s endpoints takes value 1 in ξ
0 otherwise,

for each e ∈ E.

Definition 6.2 The beach-random-cluster measure φp,q for G with parameters
p ∈ [0, 1] and q > 0 is the probability measure on {0, 1}V which to each ξ ∈
{0, 1}V = Ωs assigns probability

φp,q(ξ) =
1
Z

{∏

v∈V

pξ(v)(1− p)1−ξ(v)

}
qk?(ξ)

where k?(ξ) is the number of connected components in ξ? (including isolated
vertices) and Z is a normalizing constant.

Note that taking q = 1 yields the Bernoulli percolation measure ψp defined
at the beginning of Section 5. All other choices of q give rise to dependencies
between vertices (as long as p is not 0 or 1).

The beach-random-cluster model and the (multi-coloured) beach model itself
are closely related. The following result is the key to using the random-cluster
model in analyzing the beach model.

Proposition 6.3 Let the graph G = (V,E) be finite, let p = (M − 1)/M ,
q > 1 an integer and suppose we pick a random beach model configuration
X = (c, j) ∈ SV as follows:

1. Pick a random vertex configuration Y ∈ {0, 1}V according to the random-
cluster measure φp,q.

2. For each connected component C of Y ? ∈ {0, 1}E, pick a colour at random
(uniformly) from {1, . . . , q}, assign this colour to every vertex in C and
do this independently for different connected components.

3. Assign intensities by jx = Y (x) + 1, ∀x ∈ V .

Then X is distributed according to the Gibbs measure µM
q .

Proof. The proof is just a matter of counting. Let σ be a beach model con-
figuration that was obtained through steps 1–3 from the random-cluster config-
uration η. Note that σ will be BM-feasible and that η is uniquely determined
by σ. Thus

P(σ) = P(σ|η) · P(η) =
(

1
q

)k?(η)

· 1
Z

pn1(η)(1− p)n0(η)qk?(η)

=
1
Z

(
M − 1

M

)n1(η) (
1
M

)n0(η)

=
1
Z

(M − 1)n2(σ)

M |V | ∝ (M − 1)n2(σ),

where of course n1(η) and n0(η) represent the number of open and closed vertices
in η. ¤
As a warm-up for the phase transition considerations, we give the following
result as a typical application of the random-cluster representation.
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Corollary 6.4 If we pick a random beach configuration X = (c, j) ∈ SV accord-
ing to the Gibbs measure µM

q , then for i ∈ {1, . . . , q} and two vertices x, y ∈ V ,
the two events {cx = i} and {cy = i} are positively correlated, i.e.

µM
q (cx = i, cy = i) ≥ µM

q (cx = i) · µM
q (cy = i).

Proof. The measure µM
q is invariant under permutations of the colour set

{1, . . . , q}, so that

µM
q (cx = i) = µM

q (cy = i) =
1
q
.

We therefore need to show that

µM
q (cx = i, cy = i) ≥ 1

q2
.

We may now think of X as being obtained as in Proposition 6.3 by first pick-
ing a configuration Y ∈ {0, 1}V according to the random-cluster measure φp,q

and then assigning i.i.d. uniform colours to the connected components. Given
Y , the conditional probability that cx = cy = i is 1/q if x and y are in the
same connected component of Y ?, and 1/q2 if they are in different connected
components. Hence, for some α ∈ [0, 1],

µM
q (cx = i, cy = i) = α

1
q

+ (1− α)
1
q2
≥ 1

q2
.

¤

6.1.1 Infinite-volume limits

Definition 6.2 cannot be applied immediately to infinite graphs, but there are
natural generalizations, so called thermodynamic limits. In this subsection we
will exploit some stochastic monotonicity properties of random-cluster distribu-
tions on finite subgraphs of Zd. This will give us the existence of certain limiting
random-cluster distributions on Zd, and also the existence of Gibbs measures
for the beach model.

The basic observation is stated in the lemma below which follows directly
from definitions.

Lemma 6.5 Consider the beach-random-cluster model with parameters p and
q on a finite graph G = (V,E). For any vertex x ∈ V , and any configuration
η ∈ {0, 1}V \{x}, we have

φp,q(x is open | η) =
p q1−k?(x,η)

p q1−k?(x,η) + 1− p
, (18)

where k?(x, η) is the number of connected components containing either x or
some neighbour of x, in the edge configuration η? corresponding to η.

For q ≥ 1, Lemma 6.5 means in particular that the conditional probability in
(18) is increasing both in η and p. This allow us to use Holley’s Theorem and
the FKG inequality to prove the following result.
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Corollary 6.6 For a finite subgraph G of Zd with the beach-random-cluster
measure φp,q with p ∈ [0, 1] and q ≥ 1, we have

(a) φp,q is monotone, and therefore has positive correlations,

(b) φp,q ¹D ψp,

(c) φp,q ºD ψbp,
where

p̂ =
p

p + (1− p)q2d−1
.

Furthermore, for 0 ≤ p1 ≤ p2 ≤ 1 and q ≥ 1, we have

(d) φp1,q ¹D φp2,q.

Proof. The monotonicity in (a) is just the observation that the conditional
probability in (18) is increasing in p and η. Positive correlations follows from
Theorem 2.6. Next, note that (18) and 1 ≤ k?(x, η) ≤ 2d imply that

p

p + (1− p)q2d−1
≤ φp,q(x is open | η) ≤ p (19)

for all η as in Lemma 6.5. Theorem 2.4 in conjunction with the second (resp.
first) inequality in (19) implies (b) (resp. (c)). Finally, (d) is just another
application of Theorem 2.4. ¤
Consider now the integer lattice G = (V,E) = (Zd,∼) (for simplicity) and let
(Λn)∞n=1 be some exhaustion of it, such that Λc

n is connected for all n. We
associate with each finite region Λn ⊂ Zd a specific random-cluster distribution
with a certain boundary condition. Let φp,q,n be the probability measure on
{0, 1}V for which each ξ ∈ {0, 1}V is assigned probability

φp,q,n(ξ) =
1
Z

{ ∏

v∈Λn

pξ(v)(1− p)1−ξ(v)

}
qk?(ξ,Λn) 1{ξ≡1 off Λn}, (20)

where k?(ξ, Λn) is the number of connected components in ξ? (including isolated
vertices) that do not intersect Λc

n. For the boundary condition {ξ ≡ 1 off Λn},
all sites of Λc may be thought of as being firmly wired together by ξ?, why this is
called the wired boundary condition. There is also the free boundary condition:
{ξ ≡ 0 off Λn}, which we will not make use of here.

Consider the random-cluster measures φp,q,n and φp,q,n+1. Since Λn ⊂ Λn+1,
we can obtain φp,q,n from φp,q,n+1 by conditioning on the event {ξ ≡ 1 on Λn+1\
Λn} which is an increasing event. Hence, if q ≥ 1 then Corollary 6.6(a) implies
that

φp,q,n ºD φp,q,n+1 for n = 1, 2, . . . ,

by complete analogy with (4). Moreover, we obtain the following counterpart
of Proposition 4.9 on the existence of infinite-volume limits.

Lemma 6.7 For p ∈ [0, 1] and q ≥ 1, the limiting measure

φp,q = lim
n→∞

φp,q,n,

exists and is translation invariant.
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This convergence result has consequences for the convergence of Gibbs distribu-
tions for the multi-coloured beach model, as we will show next. For q ∈ {2, 3, . . .}
and i ∈ {1, . . . , q} and for any member of the exhaustion Λn let µi

q,n denote the
beach model measure on Ω with boundary condition η ≡ (i, 2) on Λc

n, as in
(17). The dependence of M for these measures is here suppressed. In the same
way as for finite graphs, a beach model configuration σ following µi

q,n can be
obtained starting with a random-cluster configuration chosen randomly accord-
ing to φp,q,n. The following is a simple modification of Proposition 6.3 and the
proof is analogous.

Proposition 6.8 Let the graph G = (V, E) = (Zd,∼), p = (M − 1)/M and
suppose we pick a random beach model configuration X = (c, j) ∈ SV as follows:

1. Pick a random vertex configuration Y ∈ {0, 1}V according to the random-
cluster measure φp,q,n.

2. For each finite connected component C of Y ?, pick a colour at random
(uniformly) from {1, . . . , q}, assign this colour to every vertex in C and
do this independently for different connected components.

3. The remaining vertices are assigned the colour i.

4. Assign intensities by jx = Y (x) + 1, ∀x ∈ V .

Then X is distributed according to the Gibbs measure µi
q,n.

Corollary 6.9 With p = (M − 1)/M , we have

µi
q,n(co = i) =

1
q

{
1 + (q − 1)φp,q,n(o ?←→ Λc

n)
}

.

Here ?←→ refers to connectivity in the edge configuration Y ?.

Proof. Using the recipe in Proposition 6.8 we see that the origin will get colour
i for sure if it is connected to the boundary and with probability 1/q otherwise.
We have

µi
q,n(co = i) = φn,p,q(o

?←→ Λc
n) +

{
1− φn,p,q(o

?←→ Λc)
} 1

q

=
1
q

{
1 + (q − 1)φn,p,q(o

?←→ Λc
n)

}
.

¤
Proposition 6.8 leads us to the following result extending Proposition 4.9 to the
multi-coloured beach model.

Proposition 6.10 For any i ∈ {1, . . . , q}, the limiting probability measure

µi
q = lim

n→∞
µi

q,n

on SZ
d

exists and is a translation invariant Gibbs measure for the multi-coloured
beach model on Zd with parameters q and M . The limit is independent of the
choice of exhaustion.
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Proof. As before, a weak limit of finite-volume Gibbs measures is a Gibbs
measure whenever it exists. We thus need to show that µi

q,n(f) converges as
n →∞, for any local function f .

Fix an f as above, and let ∆ ⊂ Zd be the region on which f depends.
Take n large enough so that ∆ ⊂ Λn. As shown above, we may think of a
SV -valued random element X with distribution µi

q,n as arising by first picking
a random-cluster configuration Y ∈ {0, 1}V according to φp,q,n (with p = (M −
1)/M) and then assigning random colours to the connected components, forcing
colour i to the (unique) infinite cluster. For x, y ∈ ∆, we write {x ↔ y}
for the event that x and y are in the same connected component in Y ?, and
{x ↔ ∞} for the event that x is in an infinite cluster. Clearly, the conditional
distribution of f given Y depends only on the indicator functions (1{x↔y})x,y∈∆,
(1{x↔∞})x∈∆ and (Y (x))x∈∆, since the conditional distribution of X on ∆
is uniform over all elements of S∆ such that the recipe in Proposition 6.8 is
followed. Hence, the desired convergence of µi

q,n follows if we can show that
the joint distribution of (1{x↔y})x,y∈∆, (1{x↔∞})x∈∆ and (Y (x))x∈∆ converges
as n → ∞. This, however, follows from Lemma 6.7 and an inclusion-exclusion
argument upon noting that (1{x↔y})x,y∈∆, (1{x↔∞})x∈∆ and (Y (x))x∈∆ are
increasing functions. ¤

6.2 Phase transition

In this subsection we will see that the beach model exhibits phase transition for
certain choices of the parameters.

Consider the multi-coloured beach model on Zd, d ≥ 2. All the arguments
to be used here, except those showing that the critical value Mc(q) is strictly
between 1 and ∞, go through on arbitrary infinite graphs; we stick to the Zd

case for simplicity of notation. We consider the limiting Gibbs measures µi
q

obtained in Proposition 6.10. These play a role similar to that of the ‘plus’ and
‘minus’ measures µ+ and µ− in Section 4. The difference is that those measures
represented extreme Gibbs measures in the sense of stochastic ordering, whereas
the measures µi

q cannot be compared in the same way. We have already seen
effects of this in the proof of Proposition 6.10, where the use of the random-
cluster representation was essential.

We first state an analog of Corollary 6.6, applicable to the random-cluster
measures φp,q,n on Zd with wired boundaries. We write ψp,n for the probability
measure on {0, 1}Zd

which to a configuration ξ assigns probability

ψp,n(ξ) =
∏

x∈Λn

pξ(x)(1− p)1−ξ(x)1{ξ≡1off Λn}.

Lemma 6.11 For the beach-random-cluster measure φp,q,n with p ∈ [0, 1], q ≥
1 and n ∈ N, we have

(a) φp,q,n is monotone,

(b) φp,q,n ¹D ψp,n,

(c) φp,q,n ºD ψbp,n,
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where
p̂ =

p

p + (1− p)q2d−1
.

Furthermore, for 0 ≤ p1 ≤ p2 ≤ 1 and q ≥ 1, we have

(d) φp1,q,n ¹D φp2,q,n.

Proof. Single-site conditional probabilities for x ∈ Λn under φp,q,n are the
same as in the finite setting (18). For any η ∈ {0, 1}Λn\{x},

φp,q,n(x is open | η) =
p q1−k?(x,η)

p q1−k?(x,η) + 1− p
.

We are thus back in the situation of Corollary 6.6, and the proof of that corollary
also applies here. ¤

The following result is a variant of Proposition 4.12 for the multi-coloured
beach model. It also gives a characterization of phase transition in terms of
percolation in the random-cluster model.

Theorem 6.12 Let M > 1 and p = (M − 1)/M . For any x ∈ Zd and any
i ∈ {1, . . . , q}, the following statements are equivalent.

(i) µ1
q = µ2

q = . . . = µq
q,

(ii) µi
q(cx = i) = 1/q,

(iii) φp,q(x
?←→∞) = 0.

Proof. (i)⇒(ii): By symmetry µi
q(cx = i) = µj

q(cx = j) for any i, j ∈
{1, . . . , q}. From (i) we must then have µi

q(cx = i) = 1/q, and (ii) is estab-
lished.

(ii)⇒(iii): For the given vertex x, take an exhaustion (Λn)∞n=1 where x ∈ Λ1.
Using Corollary 6.9 we have

µi
q(cx = i) = lim

n→∞
µi

q,n(cx = i) =
1
q

+
q − 1

q
lim

n→∞
φp,q,n(x ?←→ Λc

n).

But, from Lemma 6.7 we get

lim
n→∞

φp,q,n(x ?←→ Λc
n) = lim

n→∞
φp,q,n(x ?←→∞) = φp,q(x

?←→∞), (21)

thus proving the implication.
(iii)⇒(i): We will show that µi

q = µj
q for any i, j ∈ {1, . . . , q}, by showing

that µi
q(f) = µj

q(f) for all local functions f : Ω → R. Fix such a function f and
some ε > 0. For a given exhaustion (Λn)∞n=1 we then can find some n0 such
that f only depends on the configuration on Λn0 and such that

∣∣µi
q(f)− µi

q,n(f)
∣∣ < ε for all n > n0. (22)

In view of (iii) and (21) we can also find an m > n0 such that φp,q,m(x ?←→
Λc

m) < ε/|Λn0 | for all x ∈ Λn0 , and thus

φp,q,m(Λn0

?←→ Λc
m) < ε. (23)
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Here {Λn0

?←→ Λc
m} is the event that there exists an open path from Λn0 to

Λc
m. Denote this event C.

Now, let us make use of Proposition 6.8. Take Y ∈ {0, 1}Zd

according to
φp,q,m and let it generate two beach model configurations Xi, Xj ∈ Ω coupled
in the following way: In step 2 of Proposition 6.8, let the finite components get
the same colour in both configurations Xi and Xj . The infinite components
get colours i and j, respectively. Then Xi will follow µi

q,m and Xj will follow
µj

q,m. Because f is local it has finite range, so without loss of generality we can
assume ‖f‖ ≤ 1. Using (23) we then get
∣∣µi

q,m(f)− µj
q,m(f)

∣∣ =
∣∣µi

q,m(f1C) + µi
q,m(f1Cc)− µj

q,m(f1C)− µj
q,m(f1Cc)

∣∣
=

∣∣µi
q,m(f1C)− µj

q,m(f1C)
∣∣

≤ 2 φp,q,m(C)
< 2 ε. (24)

Combining (22) and (24) gives
∣∣µi

q(f)− µj
q(f)

∣∣ < 4 ε,

and, since ε was arbitrary, we know that µi
q and µj

q are identical on cylinder
sets, and hence identical. ¤
Note that the missing link (ii)⇒(iii) in Proposition 4.12 now follows as a special
case of the last theorem. Just take q = 2 and use the implication (ii)⇒(i) of
Theorem 6.12. Needless to say, none of the results leading to Theorem 6.12 rely
on Proposition 4.12.

In Theorem 6.12, the statement (i) does not exclude the possibility of the
existence of more than one Gibbs measure, i.e. phase transition. But in fact, we
have the following result.

Theorem 6.13 Each one of the statements (i)-(iii) of Theorem 6.12 are equiv-
alent to

(iv) There is a unique Gibbs measure for the q-coloured beach model on Zd with
parameter M .

We omit the proof, which is a tedious but straightforward adaptation of the
corresponding result in [9] for the Potts model. The idea for proving (iii)⇒(iv)
is that absence of percolation in the random-cluster model implies that every
region is cut off from infinity by a set of closed edges. Thus, independently of
what happens macroscopically, the local spins feel as if they are in a system
with free boundary condition. This makes a phase transition impossible.

Now we have the tools to prove that the phenomena of phase transition for
the multi-coloured beach model is increasing in M . We will see the usefulness of
the percolation criterion (iii) above, and get a generalization of Theorem 4.13.

Theorem 6.14 There exists a critical value Mc(q) ∈ [1,∞] such that for M <
Mc(q) we have that the multi-coloured beach model on Zd with parameters q and
M has a unique Gibbs measure whereas for M > Mc(q) there are multiple Gibbs
measures.
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Proof. Assume M1 < M2. We are to show that if there are multiple Gibbs
measures for the beach model with parameters M1 and q, then so is the case
also for the model with the parameters M2 and q.

Let p1 = (M1 − 1)/M1 and p2 = (M2 − 1)/M2. Then p1 < p2 and from
Lemma 6.11(d) we have φp1,q,n ¹D φp2,q,n for n = 1, 2, . . .. Going to the limit,
we get φp1,q ¹D φp2,q.

Assume there are multiple Gibbs measures when M = M1. Then, by using
the equivalence of (iii) and (iv) in Theorem 6.13, we have that φp1,q(x

?←→∞) >

0. The event {x ?←→ ∞} is increasing and therefore φp2,q(x
?←→ ∞) > 0 from

the above. Thus, using Theorem 6.13 again, we have multiple Gibbs measures
also for M = M2. ¤
The reader who was disappointed for not getting the proof of Theorem 6.13 can
instead define Mc(q) as the point supM{condition (i) holds}.

The percolation criterion in Theorem 6.12 (iii) raises the question of when
a non-trivial percolation threshold exists for the beach-random-cluster model.
For Zd this is answered below.

Proposition 6.15 For the beach-random-cluster model on Zd, d ≥ 2, and any
fixed q ≥ 1, there exists a percolation threshold pc(q) ∈ (0, 1) (depending on d)
such that

φp,q(o
?←→∞)

{
= 0 for p < pc(q),
> 0 for p > pc(q).

Proof. The statement of the proposition consists of the following three parts:

(i) φp,q(o
?←→∞) = 0 for p sufficiently small,

(ii) φp,q(o
?←→∞) > 0 for p sufficiently close to 1, and

(iii) φp,q(o
?←→∞) is increasing in p.

We first prove (i). Take some exhaustion (Λn)∞n=1 of Zd and suppose p < pc(Zd),
the critical value for Bernoulli site percolation on Zd defined in (9). For ε > 0,
we can then pick n large enough so that

ψp(o
?←→ Λc

n) ≤ ε.

Let m > n, so that Λm ⊃ Λn. By Lemma 6.11(b), we have

φp,q,m(o ?←→∞) ≤ φp,q,m(o ?←→ Λc
n)

≤ ψp,m(o ?←→ Λc
n) = ψp(o

?←→ Λc
n)

≤ ε.

Since ε was arbitrary, we find by first letting m →∞,

φp,q(o
?←→∞) = 0, for p < pc(Zd),

proving (i).
Next, (ii) can be established by a similar argument: Let p be such that

p̂ = p/[p + (1 − p)q2d−1] > pc(Zd). Lemma 6.11(c) then shows that φp,q,n ºD
ψbp,n ºD ψbp for every n, so that

φp,q(o
?←→∞) = lim

n→∞
φp,q,n(o ?←→∞) ≥ ψbp (o ?←→∞) > 0,
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proving (ii).
To check (iii), use Lemma 6.11(d). This proves (iii) and thereby the propo-

sition. ¤

In [5] it was shown that for M > 2e · q(7q2)d, there are exactly q different
Gibbs measures for the q-coloured beach model on Zd. Here we know from
Theorem 6.14 that the model has a critical M -value and the next theorem says
it satisfies 1 < Mc(q) < ∞.

Theorem 6.16 For G = (Zd,∼), d ≥ 2, and q ∈ {2, 3, . . .}, the q-coloured
beach model has a critical value Mc(q) ∈ (1,∞).

Proof. Let pc(q) ∈ (0, 1) be the critical p-value for the beach-random-cluster
model on Zd, and let

M0 =
1

1− pc(q)

Now take M < M0 and note that p = (M − 1)/M will satisfy p < pc(q). Thus
φp,q(0

?←→ ∞) = 0 and from Theorem 6.12 there is a unique Gibbs measure
for the corresponding beach model. On the other hand, if M > M0, then
p > pc(q) and again by Theorem 6.12, we have a phase transition. Thereby
the critical Mc(q) and M0 must coincide. Finally, pc(q) ∈ (0, 1) implies that
Mc(q) ∈ (1,∞). ¤
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7 The beach model on a regular tree

In this concluding section we will make use of the previous results in a special
case: the beach model on a regular tree. It turns out that the simple structure
of this graph makes it possible to compute the Gibbs measure marginal at the
root. As we know, this is closely connected to the question of uniqueness of
Gibbs measures. Here this question can be transferred to the question of the
number of solutions to a certain fixed point problem. To this question, numerical
methods give the answer, or at least an educated guess.

Let Tk denote the infinite rooted tree with k children in each generation.
All vertices have k + 1 neighbours, except for the root, which has k neighbours.
Let the n:th generation be the vertices at distance n from the root. Also, let
Γn be the finite subtree of Tk, which includes all vertices up to, and including,
generation n. The root will be denoted 0.

We will start by looking more closely at the beach random-cluster model on
V = {the vertex set of Tk}. As in Section 6, we define random-cluster measures
on an increasing family of subgraphs. For example, (Γn)∞n=1 constitutes a good
exhaustion for this purpose. Let φp,q,n be the probability measure on {0, 1}V

for which each ξ ∈ {0, 1}V is assigned probability

φp,q,n(ξ) =
1
Z

{ ∏

v∈Γn

pξ(v)(1− p)1−ξ(v)

}
qk?(ξ,Γn) 1{ξ≡1 off Γn}, (25)

where k?(ξ, Γn) is the number of connected components in ξ? (including isolated
vertices) that do not intersect Γc

n. This is similar to (20), and the difference is
that here Γc

n is not connected. We will however still refer to this as the wired
boundary condition. For q ≥ 1 the same stochastic domination relations hold as
in Section 6 and a limiting probability measure is guaranteed:

Lemma 7.1 For p ∈ [0, 1] and q ≥ 1, the limiting probability measure

φp,q = lim
n→∞

φp,q,n,

exists on {0, 1}V .

Next, we go on to the beach model on Tk. As before the state space is
S = {1, . . . , q} × {1, 2}, and the configuration space is now Ω = SV . Let µi

q,k,n

be the beach model measure on Ω which is ≡ (i, 2) on Γc
n and else follows the

right-hand side of (17). A configuration following µi
q,k,n can be obtained exactly

as in Proposition 6.8, starting with a random-cluster configuration from φp,q,n.
Note that step 3 in Proposition 6.8 makes sure that µi

q,k,n delivers proper beach
model configurations on Γn with an all i-coloured boundary. Thus, the wired
random-cluster configurations for a regular tree can be thought of as being
connected “at infinity”. The corresponding approach to defining the Fortuin–
Kasteleyn model on trees was introduced in [12]. As before, the dependence of
the parameter M is suppressed when denoting the measure µi

q,k,n.

7.1 The magnetization at the root

For the Ising model, the mean µ(X(o)) is sometimes referred to as the mag-
netization at the origin. This value, of course, is directly connected to the
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probability of having a plus at the origin:

µ(X(o)) = µ(X(o) = +1)− µ(X(o) = −1) = 2µ(X(o) = +1)− 1.

Note that there is no magnetization if, and only if, µ(X(o) = +1) = 1/2. The
corresponding probability for the beach model will be of interest here.

Proposition 6.10 can be adapted to the Tk-case, by use of Lemma 7.1. There-
fore, as n → ∞, the limit µi

q,k,n ⇒ µi
q,k exists as a weak limit and is a beach

model Gibbs measure for Tk. The interesting question is whether there are any
other Gibbs measures? We answer this question by using Theorem 6.12 and
Theorem 6.13, which go through on any infinite graph. The relevant statements
are extracted in the following remark.

Remark 7.2 Let M > 1 and let q, k ∈ {2, 3, . . .}, with i ∈ {1, . . . , q}. Then the
following two statements are equivalent.

(i) µi
q,k(c0 = i) = 1/q.

(ii) There is a unique Gibbs measure on Tk with parameters q and M .

In view of Remark 7.2 we would like to compute the probability

θq,k(M) = µi
q,k(c0 = i),

i.e. the probability that the root has the same colour as the boundary. We start
by dealing with the same probability for the finite trees Γn. Let

θq,k,n(M) = µi
q,k,n(c0 = i). (26)

Then
θq,k(M) = lim

n→∞
θq,k,n(M),

since the sequence of probabilities are decreasing and thus converging.
Let us look at the beach model configurations on Γn with boundary condition

of colour i outside Γn. Think of M as an integer again, as in Section 4. Recall
that the beach model measure is the the uniform measure over of all BM-feasible
configurations. Hence, computing the probability of finding the colour i at the
root is only a matter of comparing the number of i-rooted configurations with
the number of possible ones.

To shorten notations, represent the boundary condition colour i with +. All
the other colours are by symmetry exchangeable, and we represent one of them
with −. Intensities are represented with 1 and 2 as before, but think of the 2 as
being (M − 1)-multiple. Let En ⊂ SΓn be the set of BM-feasible configurations
on Γn that also meet the boundary condition of +2 on ∂Γn. We can partition
En into 2q sets, depending on the configuration at the root. Let

An
+2 = |{X : X ∈ En and X(0) = +2}|

and define An
+1, An

−1 and An
−2 analogously. Also, let An = |En| = An

+2 + An
+1 +

(q − 1)(An
−1 + An

−2). With this notation we get

θq,k,n(M) =
An

+1 + An
+2

An
.
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A nice property of the regular tree is that the numbers An
· · can be obtained

recursively. When determining the number of configurations of size Γn+1 with
a given root configuration, we look at the k vertices in generation 1 and their
subtrees of Γn-size, recognizing a smaller problem. With some thought and the
BM-feasibility in mind we then get the following relations:





A0
+2 = M − 1,

A0
+1 = 1,

A0
−1 = 0,

A0
−2 = 0,

and, for n ≥ 0,




An+1
+2 =

(
An

+2 + An
+1

)k (M − 1),
An+1

+1 =
(
An

+2 + An
+1 + (q − 1)An

−1

)k
,

An+1
−1 =

(
An

+1 + (q − 1)An
−1 + An

−2

)k
,

An+1
−2 =

(
An
−1 + An

−2

)k (M − 1).

(27)

Inspired by the recursion (27), let the mapping T1 : R4 → R4 be defined by

T1




x1

x2

x3

x4


 =




(x1 + x2)k(M − 1)
(x1 + x2 + (q − 1)x3)k

(x2 + (q − 1)x3 + x4)k

(x3 + x4)k(M − 1)


 .

Upon noting that T1([1 0 0 0]) = [M−1 1 0 0], we can rewrite (27) as

[An
+2 An

+1 An
−1 An

−2] = Tn+1
1 ([1 0 0 0]), n ≥ 0.

To get the desired probabilities we need to normalize by dividing with An.
Therefore, let T2 : R4 → R4 be defined by

T2(x) =
x

x1 + x2 + (q − 1)(x3 + x4)

for those x = [x1 x2 x3 x4] where the denominator does not vanish. Now
the distribution for the root configuration of Γn is given by (T2 ◦ Tn+1

1 )(x0).
It is not hard to see that the result would not be altered if we do some in
between rescaling, i.e. T2 ◦ Tn+1

1 = (T2 ◦ T1)n+1. Therefore, define the mapping
T : R4 → R4 by

T = T2 ◦ T1, (28)

and we get the following lemma.

Lemma 7.3 Let θq,k,n(M) be as defined in (26), and T as in (28). Then

θq,k,n(M) = [1 1 0 0] • Tn+1([1 0 0 0]),

where • denotes scalar product.
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7.2 A fixed point problem

Consider the following fixed point problem.

(P) Let M > 1, q > 1 and k > 1 be real numbers and let T : R4 → R4 be as
in (28). Solve the equation

T (x) = x.

Remark 7.4 If x is a solution to (P), then T2(x) = T2(T2T1 x) = T 2
2 T1 x =

T2T1 x = x. Hence, the solution x satisfies x1 + x2 + (q − 1)(x3 + x4) = 1.

We will see that the number of solutions to (P) is connected to the number of
Gibbs measures for the beach model on Tk. First two lemmas.

Lemma 7.5 Let k be an integer. The vector x̂ is a solution to (P), where

x̂ = lim
n→∞

Tn([1 0 0 0]).

Proof. Let xn = Tn+1([1 0 0 0]). Then xn is the marginal probability
distribution of µi

q,k,n at the root. As n →∞ the sequence (xn)∞n=0 will converge
to the root marginal for µi

q,k. Since T is a continuous mapping, the limit x̂ =
limn→∞ xn solves the problem (P). ¤

Lemma 7.6 The vector x̃ is a solution to (P), where

x̃ = [ a 1/q − a 1/q − a a ] ,

and a ∈ (0, 1/q) solves the equation

a =
M − 1

q {M − 1 + (q + aq − aq2)k} . (29)

Proof. With x̃ as above we get

T (x̃) =
1

q {(1/q)k(M − 1) + (1 + a− aq)k}




(1/q)k(M − 1)
(1 + a− aq)k

(1 + a− aq)k

(1/q)k(M − 1)


 .

Apparently, T (x̃) is symmetric in the same way as x̃, and the sum of its first two
components equals 1/q. Thus, x̃ solves (P) if a is chosen so that x̃1 = [T (x̃)]1,
i.e. a satisfies (29). In fact, there is (at least) one solution to (29) for which
0 < a < 1/q: Let

g(a) = a− M − 1
q {M − 1 + (q + aq − aq2)k} ,

and we can check that g(0) = −(M − 1)/(q(M − 1) + qk+1) < 0, g(1/q) =
1/(qM) > 0 and g is continuous. ¤
We call a solution to (P) symmetric if it is on the form [a 1/q− a 1/q− a a],
and the solution x̃ of Lemma 7.6 is therefore symmetric. In the same way as x̂
corresponds to the root marginal for µi

q,k, the symmetric x̃ corresponds to the
root marginal for a Gibbs measure on Tk with free boundary.
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Proposition 7.7 Let M > 1 be real, and let q > 1, k > 1 be integers. Then the
solution x̂ in Lemma 7.5 is symmetric, if, and only if, there is a unique Gibbs
measure on Tk with parameters M and q.

Proof. If x̂ is symmetric, we have

θq,k(M) = [1 1 0 0] • x̂ = a + (1/q − a)
= 1/q,

and Remark 7.2 then gives the uniqueness.
If there is a unique Gibbs measure, then Remark 7.2 implies that x̂1 + x̂2 =

1/q. From Remark 7.4 we then see that x̂ must be on the form x̂ = [a 1/q −
a 1/q − b b] for some b ∈ [0, 1/q]. Finally,

a

b
=

x̂1

x̂4
=

[T (x̂)]1
[T (x̂)]4

=
(M − 1)/qk

(M − 1)/qk
= 1,

proving that x̂ is symmetric. ¤

Corollary 7.8 Let M > 1 be real, and let q > 1, k > 1 be integers. Then

(P) has exactly one solution ⇒ There is a unique Gibbs measure on Tk.

Proof. If (P) has exactly one solution, then the solutions x̂ and x̃ of Lemma 7.5
and Lemma 7.6 must coincide. Hence, x̂ is symmetric and Proposition 7.7 gives
the result. ¤
Although q, k and sometimes even M have been thought of as integers, there is
no need for such a restriction on the parameters for (P). The problem (P) can
be posed for all real M ≥ 1, q ≥ 1, k ≥ 1, and could thus be seen as an extension
of the beach model on a regular tree – at least regarding the question of phase
transition.

It is of interest to compare these trees with the homogeneous ones. They
have one additional branch at the root, making the degree of every vertex in the
tree equal. A homogeneous tree is therefore transitive. Let T′k be homogeneous
tree where every vertex has k +1 neighbours. To compute the magnetization at
the origin for T′k, we do the same procedure as for Tk with the only difference
that in the last iteration we substitute k + 1 for k. It is thus clear that we get
positive magnetization for T′k if, and only if, we get it for Tk. The two trees
therefore have the same critical value.

7.3 Numerics

Proposition 7.7 suggests a way of determining whether the parameter triplet
(M, q, k) allows for phase transition or not:

1. Choose ε > 0 and δ > 0 small with ε ¿ δ, and let x0 = [1 0 0 0].

2. Compute xn+1 = T (xn) and iterate until ‖xn+1 − xn‖∞ < ε.
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3. Guess that (M, q, k) allows for only one Gibbs measure if
∣∣∣∣[1 1 0 0] • xn − 1

q

∣∣∣∣ < δ,

otherwise not.

For computation in matlab, in which calculations are done with an accuracy
of order 10−16, the choices for ε and δ have been ε = 10−13 and δ = 10−7.

q\k 1.5 2 3 4
1.5 1.961 1.595 1.399 1.350
2 2.493 2.113 2.030 1.952
3 3.544 3.130 2.698 2.381
4 4.487 3.868 3.109 2.648

Table 1: Critical values Mc(q, k).

We can now estimate the critical value Mc(q, k) for some different q and k, see
Table 1. A plot of the Mc surface for small q and k is shown in Figure 1.
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Figure 1: Plot of Mc(q, k).

We can also plot the “magnetization probability” θq,k(M) ≈ θq,k,n(M) for some
n suggested by step 2 above. We see three examples in Figures 2, 3 and 4.
In Figure 2 and 3, it is likely that θq,k(M) is discontinuous, but in the third
example, where q = k = 2, θq,k(M) looks continuous. In physics language,
we say there is a first order phase transition in the former cases, whereas for
q = k = 2 we only have a second order phase transition.
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Figure 2: Plot of θq,k(M) in the case q = 2, k = 3.
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Figure 3: Plot of θq,k(M) in the case q = 3, k = 2.
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Figure 4: Plot of θq,k(M) in the case q = 2, k = 2.
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