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APPROXIMATING SOME VOLTERRA TYPE STOCHASTIC
INTEGRALS WITH APPLICATIONS TO PARAMETER
ESTIMATION

HENRIK HULT

ABsTrACT. We use a general representation of continuous Gaussian processes
as the limit of a sequence of processes in the associated reproducing kernel
Hilbert space, to Gaussian processes represented as Volterra type stochastic
integrals with respect to Brownian motion, including the fractional Brownian
motion. As special cases of this representation we obtain for example, the
Karhunen-Loéve decomposition for standard Brownian motion and a wavelet
representation for fractional Brownian motion. We also show how the rep-
resentation can be used to estimate parameters. In particular we derive an
estimator for the mean-reverting parameter in an Ornstein-Uhlenbeck process
driven by a fractional Brownian motion.

1. INTRODUCTION

Gaussian processes admitting representation as a Volterra type stochastic integral
with respect to the standard Brownian motion such as the fractional Brownian
motion are used in several fields including telecommunications, subsurface hydrology
and mathematical finance. An important problem in such areas is to estimate the
parameters within a given family of models, for example in a stochastic differential
equation driven by the fractional Brownian motion. In this paper we will consider
the fractional Brownian motion and related processes. Since the fractional Brownian
motion is quite complicated, one generally tries to find an approximation which is
easier to handle. Different approximations have been studied in the literature. In
Comte (1996) [3], and Comte and Renault (1996) [4], Gaussian processes of the
form,

X = /t a(t — s)dBs, (1.1)
0

where {B;},-, is standard Brownian motion are studied. In particular the authors
show how to estimate parameters in some special cases when a(-) depend on an
unknown parameter.

A natural tool when studying approximations is to use wavelets. We can repre-
sent the process in a wavelet basis, {1; 1}, as a Mercer-type representation,

Xp =Y bin(O)Eik, (1.2)
Sk

where the wavelet coefficients, {¢; 1}, is a sequence of Gaussian variables, see Abry,
Flandrin, Tagqu and Veitch (2000) [1], and the references therein. The correlations
between the wavelet coefficients depend on the number of vanishing moments of the
wavelet used. Ideal would be to have independent coefficients. In Meyer, Sellan and
Taqqu (1999) [15], the authors obtain a wavelet decomposition for the fractional
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Brownian motion using a generalization of the midpoint displacement technique.
They show that it has the representation

B(t) = Sk®[(t) + Y &u ¥ (), (1.3)
k ik

where convergence holds almost surely uniformly on compact intervals, {S} is a
fractional ARIMA process and {&;} are is a sequence of ii.d. N(0,1) random

variables and independent of {Si}. The sequence {<I>kH , \Ilfk} is constructed from

a suitable wavelet basis, for instance the Meyer wavelets with vanishing moments
of all orders. As we shall see below, in Example 3.3, the representation (1.3) can be
derived as a special case of a more general representation. Let us also mention the
work by Carmona, Coutin and Montseny (2000) [2] and Norros, Mannersalo and
Wang (1999) [17], on further approximations and problems concerning simulation
of the fractional Brownian motion.

In this paper we study centered Gaussian processes X = {X;},.;, where T is an
index set, admitting a representation of the form:

Xt:/V(t,r)dBr, teT, (1.4)
T

where { By}, denotes standard Brownian motion and V' is a kernel satisfying some
conditions, see Section 2. The conditions are such that X has a continuous version
and includes the fractional Brownian motion. In the case where the kernel V' de-
pends on some unknown parameter 6 we suggest a general procedure for estimating
0. In particular, we show explicitly how to estimate the drift parameter, 8, in the
process

Y (t) = ba(t) + B (t),

where a(-) is a deterministic function and {Bf?,¢ € T} is the fractional Brownian
motion. We prove consistency and normality of the estimator. These results ex-
tends previous work by Norros, Valkeila and Virtamo (1999) [18]. We also derive
an estimator for the mean reverting parameter in a fractional Ornstein-Uhlenbeck
process. The estimators are based on a finite number of ’spectral components’ but
to compute these components accurately we need continuous observations of the
process. The main tool used to derive these results is the following representation
of Gaussian processes:

X, = Z U;i(t), teT, (1.5)
J

where {£;}]° is a sequence of ii.d. N(0,1) random variables and {¥;}{° is an
orthonormal basis in the reproducing kernel Hilbert space associated with X. If T
is compact and X is a.s. continuous the sum converges a.s. uniformly. To get an
explicit representation (1.5) we need to find an orthonormal basis in the reproducing
kernel Hilbert space. For processes of the form (1.4) this is not difficult since, as
we will see, the reproducing kernel Hilbert space is the image of L?(T) under the
integral transform V:

VH@) = [ Vit fes, ferxm),
T
equipped with the inner product,
VEVavwray = (f, 92

An orthonormal basis for the reproducing kernel Hilbert space is then obtained
from an orthonormal basis in L?(T') by applying the integral transform V' on each
basis function. That is, if {¢;}{° is an orthonormal basis in L?(T') then {¥;}{°,
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where ¥; = V4);, is an orthonormal basis in V(L?(T')). It should be noted that the
representation (1.5) is also useful for simulations.

The paper is organized as follows. In Section 2 we give some preliminaries on
fractional calculus, define Volterra type processes and introduce the reproducing
kernel Hilbert space associated with a Gaussian process. In Section 3 we state the
general representation (1.5) for Volterra type processes (processes of the form (1.4))
and obtain as special cases, the Karhunen-Loéve representation for the standard
Brownian motion and a wavelet representation (1.3) for the fractional Brownian
motion. We also give an approximation of Skorohod-type stochastic integrals with
respect to Volterra type processes with deterministic as well as stochastic integrands.
In Section 4 we apply the results to parameter estimation and give some examples
including estimation of the mean-reverting parameter in an Ornstein-Uhlenbeck
process driven by a fractional Brownian motion. We also discuss consistency of the
derived estimators.

2. PRELIMINARIES

We begin by reviewing some results on fractional calculus to be used later in the
paper. The main reference on fractional calculus is the book by Samko, Kilbas and
Marichev (1987) [20]. The definition of the fractional integral on an interval that
we will use is the Liouville fractional integral and is given by:

Definition 2.1. For f € L'([a,b]) and a > 0, the integrals

t
I () 2 ﬁ / (t— )2 1 f(s)ds, t>a,

b
TGN® 2 o [ G- @ <

is called the right- and left fractional integral of order «, respectively.
One can also define fractional differentiation as follows.

Definition 2.2. For functions f given in the interval [a,b], the left-handed and
right-handed fractional derivative of order a > 0, is defined by,

d [a]+1 Cta
<a) Ii+{ }f(t)a

d [a]+1 Cfa
(_£> I[}— { }f(t)a

respectively where [a] denotes the integer part of a and {a} = a — [a].

(1>

(Da+ ()

(1>

(D5- 1))

The connection between fractional integration and differentiation is given by the
following theorem, see Samko et.al. [20], Theorem 2.4, p. 44.

Theorem 2.1. For a > 0 we have,

D I%f = f, for f € LMa,b]), (2.1)
I8D%f = f,  for f € I% (L ([a,b]). (2.2)
Because of this theorem we will sometimes write, I > for D%, . By Corollary 2
on p. 46 in [20], we have the following integration by parts formula:
b

b
/f@@$mwﬁ=/9®@ﬁﬁ®% (2.3)

a

for0<a<1land felr (LP),ge I (L9),1/p+1/¢<1+a.
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We can similarly define fractional integration and differentiation on the real line
by analogous expressions:

t
IShHE 2 ﬁ / (t— )1 f(s)ds, t€R

eh) 2 ﬁ /tm(s—t)a—lﬂs)ds, teR

We refer to Samko et.al. [20], Chapter 2, for further details.

2.1. Gaussian processes of Volterra type. Let us denote by T an index set
which will be a compact interval or the whole of R. We will often use the unit
interval and therefore we introduce the notation I = [0,1] C R. We may think of
t € T as time. Consider a deterministic function V : T x T' — R, satisfying the
following hypothesis:

(1) V(0,5) =0for all s € T and V(t,s) = 0 for s > t.
(H) { (2) There are constants C,a > 0 such that for all s, € T

Jr (V(t,r) = V(s,r))* dr < C|t — 5|

Let B = {B:},cr denote the standard Brownian motion on T. The standard
Brownian motion on T' = R is two independent Brownian motions starting at time
0 running in opposite time directions. Let X = {X;}, . be the process defined by

X, = / V(t,s)dB,, teT. (2.4)
T

Since (H2) implies that V (t,-) € L?(T) for each t € T, the process X is well defined.
Clearly X is Gaussian and has covariance function

p(t,s) = E(X; X;) = / V(t,r)V(s,r)dr. (2.5)
T
Definition 2.3. A process X = {X;},., with representation (2.4) and kernel V'
satisfying (H) is called a Volterra type process.

The hypothesis (H) guarantees the existence of a continuous version of the process
X. Indeed,
)

E(1X, - X,J?) = E(

/TV(t,r)dBr—/V(s,r)dBr

T

2 p/2

< (]E /V(t,r)dBr—/V(s,r)dBT )

T T

p/2

< C(/ (V(t,r)—V(s,r))2dr)

T
< Clp—sprr?
S C|t_8|1+5:

for some § > 0 and p > 2/a. Hence, Kolmogorov’s condition is satisfied and a
continuous version exist. Therefore, for any compact set A C R, we can define a
measure P on 2 = C(A), the space of continuous functions on A vanishing at zero,
with X as coordinate process. We also note that V induces an integral transform
of functions in L*(T),

VHE) = /TV(t,s)f(s)ds.
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The image of L?(T) under this integral transform consist of continuous functions.
Clearly, by (H2) and Holder’s inequality the function (V f)(t), f € L*(T), is con-
tinuous. Finally, we remark that by (H1) X is adapted to the natural filtration
generated by B. The following are our primary examples.

Example 2.1 (Brownian motion). Let T'= I and

V(t,s) = 1j0,4(s)-
Then V satisfies (H) and X is the standard Brownian motion with covariance func-
tion p(t,s) = t A s. We will denote standard Brownian motion by {B;},.,. Note
that, as an integral operator acting on functions in L?(T'), V is simply the integra-
tion operator:

Wﬁ®=LWWH®%=AﬂWk:%JW)

Example 2.2 (Ornstein-Uhlenbeck process). Let T' = I and
Vit,s) = ea(t*s)l[o’t] (s).
Then V satisfies (H) and X is the Ornstein-Uhlenbeck process. That is, the solution
to the stochastic differential equation
dX; = 0Xydt +dB;, Xo=0.
This can easily be verified using It6’s formula.

Example 2.3 (Fractional Brownian motion). For H € (0,1), let 7 = I and
V(t,s) = Ku(t,s) where,

1
VVal(H + 1)
with ; F» the Gauss hypergeometric function and
A T'(2—2H) cos(rH)
Vu =

mH(1 —2H)
a normalizing constant which makes E[X(1)?] = 1. Then V satisfies (H) and X

is the fractional Brownian motion with index H, see Decreusefond and Ustiinel
(1999) [8]. Note that, as an integral operator acting on functions in L2(I), V is the
operator:

t
Wﬁ®=/wwﬁ®%=/Kﬂwﬁ®%=wﬁwx
I 0
which is an isomorphism from L?(I) onto Igfl/ >(L2(I)) and

VVaKu f = Igftl/%HIéf_HtH’l/Q f, for H<1/2,
e DL H-2 [ 2020 1 gor | > 12,

11 1 t
(t—s) 35 FR(H->,--—HH+-,1- oy (s),

A
KH(tas) - 2a2 2a

(2.6)

see Samko et.al. [20] p. 187. The fBm has stationary increments and covariance
function

1
p(t,s) = E(X:X,) = 5 (t2H + s |t — s|2H) .

We will denote fBm by {Bf'}, <~ One of the most important properties of the
fractional Brownian motion is self-similarity in the sense that for any ¢ > 0,
{BH(ct),t e I} = {HBH(t),t € I}.

One can also define the fractional Brownian directly on the whole real line. This
moving average representation is often used in the literature. For H € (0,1) let

My (t,s) = ﬁ ((t - 3)571/2 _ (_5)5*1/2) , s, teER,
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where uy = max(0,u) and

- 5 11172
Cy(H) = {/ ((1 +s)H-1/2 sH—l/2) ds + —} .
0 2H
Then X is the fractional Brownian motion, see Samorodnitsky and Taqqu (1994) [21]
p. 321. Note that, as an integral operator acting on functions in L?(R), My can be
written as
£V

Muf)®) = [ (=91 = f ) s
—0oQ

This operator can be expressed in terms of the Marchaud fractional derivative, see

Pipiras and Tagqu (2000) [19] and Samko et.al. [20]. It should be noted that for

t < 0, Mg is not a Volterra type operator.

Since the kernel of the fractional Brownian motion is fairly complicated one
sometimes modifies it to simplify computations. One such modification is given in
the next example where we simply remove the Gauss hypergeometric function (and
its singularity at zero). This process is sometimes referred to as fractional Brownian
motion of type II, fBm(II).

Example 2.4 (Fractional Brownian motion of type II). For H € (0,1), let
T =1and V(t,s) = Ju(t,s) where,
1 1
Ju(t £ ———(t—s)f 21 :
H( ?S) I—\(H+%)( 5) [O,t)(s)
Then V satisfies (H) and X is fractional Brownian motion of type II, see Feyel and la
Pradelle (1999) [9]. It is convenient to use the parameterization a = H +1/2 when
working with fBm(IT). The fBm(IT) has non-stationary increments and covariance
function
1 tAs L L

T2 /0 t—r)*""(s—r)*""dr.

We will denote fBm(II) by {W{},_,.
functions in L?(I), V is the Liouville fractional integration operator:

p(t, s) = E(XiX,) =

Note that, as an integral operator acting on

Wﬁw=/WmH@%=AJﬂmﬁ®%=%wWL

I
see Feyel and la Pradelle [9].

2.2. The reproducing kernel Hilbert space. The general definition of a repro-
ducing kernel is:

Definition 2.4. A function p defined on T x T is said to be a reproducing kernel
for the Hilbert space H of functions on T if

(1) p(t,-) e HforeachteT
(2) (G,p(t," ) = G(t), for each G € H.

For Gaussian processes we can construct the reproducing kernel Hilbert space
with reproducing kernel p(t,s) = E[X;X;] as follows. Let H be the closure in
L?(Q) of the space spanned by {Xt},er equipped with the inner product (¢, ()r =
E(£C), for £, € H. The reproducing kernel Hilbert space H associated with X
is the space R(H) = {R(§) : £ € H} where for any ( € H, R(() is the function
R(O)() = (¢, Xy)g = E(¢X;). H has inner product (F,G)y = (R7'F,R71G)p.
Since p(s,-) = R(X;), we clearly have p(s,-) € H. Furthermore, (2) is satisfied since
for £ € H, (R(£),p(s, )y = E(£X;) = R(€)(s). For more details on reproducing
kernel Hilbert spaces we refer to Grenander (1981) [10] or Janson (1997) [11].
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For Volterra type processes we have the expression (2.5) of the covariance func-
tion. Then the reproducing kernel Hilbert space can also be represented as the
image of L?(T) under the integral transform V, H = V(L?(T)) equipped with the
inner product, (F,G)y = (V~'F,V~'G)2(r). Indeed, it is clear that V(L*(T)) is
a Hilbert space with p(t,-) € V(L?(T)), proving (1) and for any F = V f we have

(F, plt, Y = {1,V (&, ) 12y = /T V(t,u)f(u)ds = F(t).

which proves (2).

We also note that by Theorem 3 in Kallianpur (1971) [12] we have that, for
compact T, the closure of H in C(T) is equal to the support of P. This will be an
important property in the applications to parameter estimation in Section 4.

Example 2.5 (Brownian motion). For the standard Brownian motion on T = I
we saw that V is just the integration operator. Therefore the reproducing kernel
Hilbert space is simply the Sobolev space I/VO1 2 of differentiable functions, vanishing
at zero, with first derivative in L(T).

Example 2.6 (Fractional Brownian motion on I). For the fractional Brown-
ian motion on 7' = I we have V = Kp. Since Ky is an isomorphism from L?(I)
onto Iolfrl/ *(L2(I)) the reproducing kernel Hilbert space is Iéqfl/ *(L2(I)) with the

inner product (F,G)y = (K5'F, K;IIG)Lz(I).

Example 2.7 (Fractional Brownian motion on R). For the fractional Brown-
ian motion on T = R we have the representation X; = ff\;g My (t,s)dBs which
is not a Volterra type representation for ¢ < 0. However, it is easy to check that
the same arguments as in the case of Volterra processes hold to deduce that the
reproducing kernel Hilbert space is the space My (L?(R)). It can be further char-
acterized using fractional integration and differentiation operators, see Pipiras and
Taqqu [19].

Example 2.8 (Fractional Brownian motion of type II). For V = I, i.e. in
the case of fractional Brownian motion of type II on T' = I, the reproducing
kernel Hilbert space is the space I (L?(T)) with the inner product (F,G)y =
(Ig F, I G) 2(1)- That is, the fractional Sobolev space Woa’2.

3. REPRESENTATION OF VOLTERRA TYPE STOCHASTIC INTEGRALS

In this section we apply a general representation theorem for Gaussian processes
to Volterra type processes. We give as examples, how to obtain the Karhunen-
Loéve decomposition, the classical Lévy construction of standard Brownian motion
and also a wavelet representation for the fractional Brownian motion studied in
Meyer et.al. [15]. In the next section we will use this representation for parameter
estimation in a fractional Brownian motion with drift and a fractional Ornstein-
Uhlenbeck process. The general representation theorem mentioned above is the
following, which is proved in Janson (1997) [11], Theorem 8.22.

Theorem 3.1. Suppose that {X;},., is a Gaussian process on some index set A
and {¥;}]° is a countable orthonormal basis in the associated reproducing kernel
Hilbert space H. Then there exist independent standard normal random variables
{&;}7° such that for each t € A,

Xy =) T(t)g (3.1)

with the sum converging in L*(Q) and almost surely.

Conversely, for any sequence {§j}f° of independent standard normal random
variables, the sum converges almost surely for each t € A and defines a centered
Gaussian process with the same distribution as {X}, -
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As indicated in Remark 8.24 in [11] we can prove the following corollary.

Corollary 3.1. If X is a.s. continuous and T C A is compact then the sum in
(8.1) converges almost surely uniformly on T.

Proof. Since X is a.s. continuous, H consist of continuous functions on A. We
consider the compact subset T C A and we may take Q = C(T). We have in
particular that each ¥;(-) restricted to T" is in C(T') so the partial sums,

Sn() = Z U, ()&

~

form a random sequence of elements in C(T). Now, since T is compact, C(T)* =
M (T), where M(T) is the space of finite signed regular Borel measures on T'. On
A the function p(t,-) can be expanded in the basis {¥;}]° and we find that

(1) = YT, plts D = 30505 8.

Furthermore, E[S,(t)*] = Y7_, ¥;(¢)* < 3202, ¥;(1)* = p(t,t) and E[X(t)*] =

j=1
p(t,t). Since S,(t) = X (t) in L?() for each t, and p(t,t) is bounded on T, the
bounded convergence theorem implies that for u € M(T),

/ S (t)du(t) — / X (t)du(t), in L*(9).
T T

The statement now follows from the Lévy-It6-Nisio Theorem, see Ledoux and Ta-
lagrand (1991) [13], Theorem 2.4. O

In our quest for finding an explicit representation we are left with the problem
of finding an orthonormal basis in . This is however very simple because H =
V(L*(T)). Simply take any orthonormal basis {1;};° in L?(T) and apply the
integral transform V' on each function. Then {¥;}{° with ¥;(-) = (V4;)(-), is an
orthonormal basis in V(L?(T)). Indeed,

(U5, Oehvzry) = VU,V 0 oy = (5, V) p2ry =0, j#k
and
1%;llvzzcry = 1¥ille(ry = 1.

Example 3.1 (Brownian motion). Let {1;}7° be the orthonormal basis of L?(I)
defined by

;(t) = V2cos(t/A;),
where \; = 1/m(j + 1/2). Then the functions

W(0) = (s0)(0) = | VEcos(r/A,)dr = XV Bsin(t/ ),

form an orthonormal basis in the reproducing kernel Hilbert space WO1 2 and

By =) A\V2sin(t/;)¢,
j

where {£;},° is a sequence of i.i.d. N(0,1) random variables. This is the standard
Karhunen-Loéve expansion for Brownian motion.

Example 3.2 (Brownian motion). Let {¢,}," be the Haar basis of L?(I) de-
fined by,

Yo(t) = 1),
Yu(t) = 2% (Pt—k), n=2+k j>0and 0< k< 2.
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where 1(t) =1 on [0,1/2) and 9(¢t) = —1 on [1/2,1]. Integrating gives us the basis
{®,}5° of the reproducing kernel Hilbert space,
To(t) = ¢,
T, (t) = 27920 (2t—-k), n=2 +k,
where ¥(-) is the primitive of 9 (-),
U(t) = %max(O, 1—12t-1)).

We obtain the representation,

By = Z \I’n(t)é-na

where {£,}o is an i.i.d. N(0,1) sequence. This is a classical construction of Brow-
nian motion by Lévy, see Steele (2001) [22] for a nice exposition.

Remark 3.1. We see that any orthonormal L?(T')-basis, {¢;};", yields a represen-
tation of Brownian motion as,

B, =) ¥;(t)¢,
J

where, ¥;(t) = fot Y(s)ds and {¢;}]° is a sequence of i.i.d. N(0,1) random variables.

Example 3.3 (Fractional Brownian motion). Consider the fractional Brown-
ian motion on 7" = R with the kernel My (t,s). Let {¢,¢} be a wavelet pair such
that {¢x,v;r}, where,

oe(t) = ot—k) k=0,£1,%2,...
V; k(1) 222t —k), j>0,k=0+1,+2,...
form a basis in L2(R). For instance we may take the Meyer wavelets, see Meyer
et.al. [15] and references therein. We will derive the wavelet representation of frac-

tional Brownian motion given in the recent paper by Meyer et.al. [15] as a special
case of (3.1). Our goal is therefore to obtain the representation,

BHE(t) = i SH®(t—k) + Z i 27H W (27t — k)ejk — bo, (3.2)

k=—oc j>0 k=—o0

where convergence holds uniformly on compact intervals, {Sy}>  is a fractional
ARIMA and {e;,;} is a sequence of i.i.d. N(0,1) random variables, independent of
{Sk}. The random variable by is a correction such that B (0) = 0.

Since B has representation (3.1) and {¢x,%;x} is an orthonormal basis in
L?(R), there exists independent sequences {n;} and {&;} of i.i.d. N(0,1) random
variables such that (3.1) can be written as,

BR(t) =) me®i(t) + > &ak(t), (3.3)
& ik

where ®(t) = (Mudr)(t), ¥ r(t) = (Muy;k)(t) and My is the integral transform
in Example 2.3. By Corollary 3.1, convergence holds almost surely uniformly on
compact intervals. It is easy to verify that ¥, x(t) coincides with 279/2® (27t — k)
in [15]. If we define ®(t — k) £ ®(t) — ®x(t — 1) and use Lemma 10 in Meyer
et.al. [15], we see that the first sum in (3.3) can be rewritten as,

D omBk(t) =Y Spd(t—k) =Y Sk®(0 k),
o k i
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where,
Sk = mAnt...+n kE>1
So = 0
Sp = —mo—m—...—Nky1, k<1

This is not quite the representation in [15]. However, if we express the function )
in the function ®g by, ® = (®,P5)y Py we get the desired representation.

3.1. Representation of stochastic integrals. In this section we show how to
approximate stochastic integrals w.r.t. a Volterra type process X.

There are essentially two different ways to define a stochastic integral of deter-
ministic functions with respect to the Volterra type process X, see Decreusefond
(2000) [6]. For our purposes it is convenient to define the stochastic integral as the
extension of the isometry:

Ix : LA(T) — IL2(Q) (3.4)
V() — X(). (3.5)

One advantage with this approach is that orthogonality relations become straight-
forward

]E[Xt|Xu7u S 8] = IX (V(t7 ')1[0,5])7

but it is not the limit of Riemann sums. This might indicate that it is difficult to
approximate this stochastic integral since we can not approximate it by Riemann
sums. However, if we note that the isometry is

Ix=R1oV, (3.6)

we can approximate it, using the representation (3.1), see Proposition 3.1 below.
We will now also define a stochastic integral stochastic integrands with respect to X .
It turns out, the natural stochastic integral in our context is the Skorohod integral,
which can be defined for any Gaussian process. The machinery needed to deal with
these stochastic integrals is quite extensive and we refer to Nualart (1995) [16] for
a more comprehensive introduction on Malliavin calculus. Let the index set T be
compact and put @ = C(T'). The dual space Q* of Q is the space M(T) of finite
signed regular Borel measures on 7. Let F' : 2 — R be a functional of the form

F(w) = f((wﬂh)Q,Q*;- - 7<w,nn)Q,Q*)7

where 7; € Q*, 1 =1,2,... ,n. If f belongs to the space C5°(R™) of infinitely con-
tinuously differentiable functions with all its partial derivatives having polynomial
growth, we call F' a smooth cylindrical functional and denote by S the space of all
smooth cylindrical functionals. Let R* and V* denote the adjoints of R and V,
respectively. We introduce the derivative of F' € S as,

VF(w) = Z@f((%m)ﬂ,m,--- s {w,mnda,e)p(n5),

where p : 9* — H is the mapping R o R*, or equivalently V o V*. We denote by ¢
the divergence operator, i.e. the adjoint of V. It is characterized by the relation

E[F§(U)] =E[VE, U], (3.7)
for U € L2(;H) and F € S.

Definition 3.1. For a process {u;},., such that El|ul|?, () < 00, the stochastic
integral with respect to X is defined as,

/ us6Xs 2 5(Vu).
T
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For adapted processes {u; },. this definition is nothing but the Ito integral w.r.t. the
standard Brownian motion {B;}ic7 in the representation (2.4) of the Volterra pro-
cess, see Decreusefond and Ustiinel [8] Theorem 4.8.

Using the decomposition (3.1) we can approximate these stochastic integrals for
integrals as the following proposition shows.

Proposition 3.1. Let {1;}{° be an orthonormal basis in L*>(T) and X a Volterra
type process with kernel V. Then there ezist a sequence {&;}° of i.i.d. N(0,1)
random variables such that the following statements hold.

(1) If f € L*(T) is a deterministic function and f; = (f,v;)r2(1), then
Ix(f) =) fi&, as.
j=1
(2) If u € L*(T;H) is an adapted process and uj = (u,;)r2(T), then
0(Vu) = Zujfj, a.s.
j=1

(3) Let u € L*(T;H) be any process and uj = (u,¥;)r2(r). If Vuy eists for all
J>1and B[(X72, |us])?] < oo, then

0(Vu) = Zujfj - Z(Vuj,\Ilj)H, a.s.

j=1

Jj=1

Proof. (1) Since {t;};° is an orthonormal basis in L*(T) it follows that ¥; = V1),
form an orthonormal basis of the reproducing kernel Hilbert space and therefore
{&}7°, where & £ R™! o V4;, is an orthonormal basis in H. Hence, {&}]° is
a sequence of ii.d. N(0,1) random variables. Writing the function f as, f(t) =
> e fivi(t), where f; = (f,4;)r2(r) and using (3.6) yields,

oo o0 oo
Ix(f)=R‘oVf=R "oV > fi; | =R | D_£;9, | =D fi&-
Jj=1 Jj=1 Jj=1

Since f € L?(T) we have that the sequence {f;};° is in {?(N) and S, £ i fi&i
is a square integrable martingale so convergence follows from the martingale con-
vergence theorem. This proves (1).

(2) First we show the result for an elementary adapted process 4™ and then we use
a limit argument for general adapted processes u. Suppose that u is an elementary
adapted process of the form u(t) = Yo Fil(; 1,,,)(t), where F; € S and F; is
Fi;-measurable, where {F;},., denotes the natural filtration generated by X. By
(3.7) and the product rule for the derivative operator we have for any G € S,

E[GOV Y Filu,)| = E[Y (VG FVig )]
=1 i i=1

i=1
Z ((v(GFZ)7 Vl(ti,ti+1]>7‘l - (GVE7 Vl(ti,ti+1])7'l):|

[

= E[ Y (CFO(V 1) = GVFL Vo))
|
[

G Z F;(S(Vl(tz ,t¢+1]):| ’

Z (GE(S(Vl(ti,ti+1]) - GAVﬁl(VFl)(t)l(t“tz-{.l](t)dt)]
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where the last equality holds since (VF;)(t) = 0 on (¢;,T] by Proposition 1.2.4 in
Nualart [16] and this implies that (V=1VE;)(t) = 0 on (¢;, T]. Hence,

6(V Z El(ti ,ti+1]) = Z Fié(vl(ti,t,’+1])'

=1 =1
By (1)a J(Vl(ti,ti-{-l]) = Z;il ijj where f] fT t1,t,+1]( )"vbJ (t)dt so we get,
SV Y. Pl = 2026 | ZF Lt (005 () = 3 1
i=1 j=1 i=1 j=1

Any adapted process in L?(Q x T') can be approximated by a sequence u™ of simple
adapted processes in the norm of L2(Q x T'). Furthermore, u™ — u in L?(Q x T)
implies that uf £ (u™, ;) p2(ry) — u; in L?(€). Since § is closed (see Nualart [16]
Section 1.3) and V is continuous §(Vu™) — §(Vu) in L?(Q) which completes the
proof of (2).

(3) Observe that for deterministic functions f € L%*(T) the integrals §(V f) and
Zx(f) coincide. We expand Vu in the basis functions {¥;}{° of #, (Vu)(-) =
>y ui¥(-), where uj = (Vu, ¥ )3 = (u,9;)r2(r) and convergence holds a.s. in
‘H. By (3.7) and the product rule for the derivative operator we have for any F' € S,

E[F(u; ¥;)] = E[(VF,u;¥;)y]
= E[V(Fu;), ¥j)u — (FVu;, Uj)y]
= E[Fu;6(¥;) — F(Vu;, ¥;)3]
= E[F(u;0(¥;) — (Vu;, ¥j)q)]-

Hence, 6(u;¥;) = u;¥; — (Vu;, ;). The stochastic integral of Vu with respect
to X can now be written as,

§(Vu) = 6(VZuj¢j) = 5(2 u;Vipy) = Zuﬂ(‘l’j) - Z(Vwa Tj)n

Z iIx () =Y (Vu;, ¥
j=1 j=1

The interchange of the sum and the Skorohod integral in the third equaltiy is
motivated by the following argument.

E[F&(Zujxpj = E[(VF, Zu, =BV 'VFE, > ui) o))

Jj=1 j=1
= ]E[/ VIVF)(t Zujzp] t)dt] = / Z VIVEF) (t)ujep;(t)dt]
= ]E[Z/ VIV E) (8 uje;(t)dt] = [Z( TVE i) )

j=1
=R[F Z 8(u; ;)]
j=1
where the 5:th equality holds if

E[g /T (VI F) (g (£) de] < oo
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By Cauchy-Schwartz inequality,

Z / 9P O] < ELY IV VP )]

B[S [V Flhdus]] = E ||VF||Hfj|uj|]

Jj=1 j=1

<(BlIvFI]) " (e Z|u,| )" < o0

The first factor is finite since F' € S and the second factor is finite by assumption.
O

4. APPLICATIONS TO PARAMETER ESTIMATION

We will now show how the representation (3.1) can be used to estimate parame-
ters in some stochastic differential equations driven by a Volterra type process. In
this section we assume that the index set T is a compact interval [0, T'.

Suppose that the Volterra type process {X;},., has representation (2.4) and
that the kernel V' depends on some unknown parameter 0, V (t,s) = V (¢, s; ), that
we want to estimate. We write Vj(t, s) to indicate the dependence on 6.

Example 4.1. A simple example of the situation described above is the Ornstein-
Uhlenbeck process, see Example 2.2, where

t
X, :/ e/“="dB,, teT.
0

Example 4.2. Another example is when 6 = o is the (unknown) variance of the
process, V(t,s;0) = oV (t,s). This example will be studied in detail in Example
4.3 in the case of fractional Brownian motion.

Assume that we have continuous observations of X on 7T'. If we can compute the
coefficients &; in the representation (3.1) and if the dependence on the unknown
parameter § is simple we should be able to construct an estimator of § based on
the first n coefficients, say. This will be illustrated in several examples below. In
order to compute the coefficients £; we would like to compute the inner product
(X (), ®;(-))n, where as usual {¥;};° is an orthonormal basis of H. However, since
X is typically not in A the inner product (X(-), ¥;(-))» does not make sense. To
avoid this problem we may take an approximation X¢ of X such that X° € H.
Since H is dense in the support of P, see Theorem 3 in Kallianpur [12], for each
€ > 0, we can find a X¢ € H such that

fgg | Xe(t) — X(t)] <e. (4.1)

The approximation X¢ can be represented in the orthonormal basis {¥;}° as
:le](t) ;, teT,
J

with the sum converging in H and in C(T"). We would expect the coefficient 5 to be
a good approximation of §; for j = 1,... ,nif € is close to zero. The problem is now
reduced to finding the coefficients of the approximation X¢. Using an integration
by parts formula for V' we can for sufficiently regular basis functions ¢; € L*(T)
compute the coeflicients &; without having to find an explicit approximation X°¢.
To explain this we need the integration by parts formula for the operator V! and
its adjoint V*™" with respect to the L?(T)-inner product, defined by the relation

/ FOVg)(t)dt = /T d O (@t (4.2)



14 H. HULT

for f € V*(L?(T)) and g € V(L?(T)). An example is the integration by parts
formula (2.3) for fractional differentiation on the interval [a,b] where V! = D2,
and V' = D . For ¢; € V*(L*(T)), we can compute the coefficients & as

& =(X°(), ¥;(Nvamy =V X(), V() L2
- / (V=IXE) (V1 () ()dt = / (V1 X2) (8 (1)t
T T

- /T X () (V) (1)t

where the last equality follows from the integration by parts formula (4.2). We may
rewrite the last expression as,

/ XV ) ()dt + /T (X(t) — X(0) (V""" 0y) (t) e

Since € is arbitrary we can let € — 0 and since X° — X in C(T') as € — 0 we find
1
. *—1
&=1me = [ X0 w0

For basis functions {1;}°°, such that ¢; € V*(L*(T)), we can compute (V*_ 4)(t)
and the &;’s are obtained. This heuristic argument gives us a candidate for ;. The
next proposition proves that this candidate is indeed the correct one.

Proposition 4.1. Let {X;},.r be a Volterra type process. Assume that {1;}7" is

an orthonormal basis in L*(T) and the integration by parts formula (4.2) holds.
Furthermore suppose that v; € V*(L*(T)), j > 1.
Then, the coefficients {€;}]" in the representation (3.1) are given by

/X )@, j=1,2,... (4.3)

Proof. By the proof of Theorem 3.1 we have that £; = R™'®,(t), where {¥;}°
is an orthonormal basis in the reproducing kernel Hilbert space. For processes of
the form (2.4) we have that the reproducing kernel Hilbert space is V (L%(T")) and
hence ¥; = V4; is an orthonormal basis in this space. We need to prove that
R(&;)(t) = ¥,(t) for &; given by (4.3). Indeed, using integration by parts,

R(&)(t) = E(&X(1) ( 0 [ X )(s)ds)

- /T ol ) (V") (s)ds = /; (VL p(t, ) ()93 (5)ds

- /T V(t, sy (s)ds = (Vih;)(t) = T;(t).
]

We will soon give several examples where this proposition can be applied, but
first we show that there is such an integration by parts formula for the kernel of the
fractional Brownian motion.

Lemma 4.1. The operator K5 : Ky (L*(I)) — L*(I) defined by

Ly, | eHDYEHHS2D2E £ o < 12,
Ky f=

- 1/2DH VA1=HDL o for H > 1/2, (4)

is the inverse operator to Ky and satisfies the integration by parts formula

/0 FOE gt g) (1)t = / oI ) (bt
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where K}I_l is defined by

ki f = DHH 2D 2= 2= H ¢ for H < 1/2,
" D 2=HpI=V2H-1/2 o [ > 12,

Proof. To prove that Kﬁl is the inverse of Ky we need to show that for f €
Ku(L*(I)), KuK5'f = f and that for g € L*(I), Ki' Krg = g. This follows from
repeated use of (2.1) and (2.2). The second statement follows from the integration
by parts formula (2.3). O

4.1. Examples. Next, we give several examples when using the reproducing kernel
Hilbert space structure, and the representation (3.1) in particular, becomes effective.

Example 4.3 (Estimating the variance in fBm). In this example we consider
the fractional Brownian motion X = {X;},., with unknown volatility o,

X, =0Bf, tel

We want to estimate ¢ from continuous observations of X on I. In this case we
have,

V(t,s; 0) = cKu(t,s).

To derive an estimator, &, of o, we use Proposition 4.1 to compute the coefficients &;
in the representation (3.1). To apply this proposition we have to use the integration
by parts formula (4.2). As an L?(T') basis we may take the trigonometric basis,

B3(t) = V3eos(t/N;), Ay =1/@(G +1/2)), j=0,1,...
We have, {; = z; /0, where
25 = / X () (K3 ) (0)dt.

Since the &;’s are i.i.d. N(0,1) we find that the z;’s are i.i.d. N(0,0?) and the
likelihood function based on the first n coefficients is,

Lu(o) = I:[ i exp (g (as/o)).

Maximizing w.r.t. ¢ yields the maximum likelihood estimator 62 of o as,

x
1

A2 2
o, = i

n
J=

which has the same distribution as (¢2/n)- Z where Z has Chi-squared distribution
with n degrees of freedom. This estimator is unbiased since,

2
E(62 - o?) :E(%Z—UZ) =0,

and consistent as n — 00,

~2 2 _ 52 Z;;l (512 — 1) 5

0., — 0 0, a.s.
n n )

by the strong law of large numbers.

The next example illustrates a situation where we have a deterministic drift with
an unknown parameter.
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Example 4.4 (Estimating the drift parameter). Let {Y;},., satisfy,
Y(t) =6a(t) + X(t), Yo=0, (4.5)

where a(-) is some known deterministic function, 6 is an unknown parameter to
be estimated and {X;},., is a Volterra type process with kernel V' satisfying the
integration by parts formula (4.2). We assume that a(-) belongs to H. If we would
only have a(-) in C(T) we can at least approximate it by an element in H since H
is dense in the support of P. We expand a(-) in an orthonormal basis {¥;}° of H
as, 3 o2, a;¥;(t), t € T, where,

45 = a0, 1O = Va0,V sy
= [ o= [ awm v
T T

and the last step follows from the integration by parts formula (4.2). By (3.1) for
X we find that Y can be written as,

Y (t) = a(t) —02@ a,+qu,-(t)gj

If we put y; = Oa; + &; we get Y (t) = Z]. W¥,;(t)y;, where convergence holds a.s. in
C(T). To compute the coefficients y; we use Proposition 4.1 and as in the previous
example we may take {1}, to be the trigonometric basis. Since &; = y; — fa; and
the &;’s are i.i.d. N(0,1), the likelihood function based on the first n coefficients is

LI | 1
L,(0) = ——exp|—= -—9a-2>.
Maximizing w.r.t. 6 yields the maximum likelihood estimator, én, of 9 as,

6 — E?:l a;y;
" E_?:l ((1j)2

The estimator §,, has normal distribution with mean 6 and variance 1/ Z;-L:l(aj)2.

In Norros et.al. [18] this example is studied for the fractional Brownian motion
with linear drift a(t) = t. We will now show that our approach leads to analogous
results in this special case.

Example 4.5 (Fractional Brownian motion). Let T' = I and consider the pro-
cess {Y; },¢ satisfying,

Y(t) =6t +BH(t), Y5=0, (4.6)
where { B/} rer is the fractional Brownian motion. By Example 4.4, with a(t ) =t,

the estimator 6,, has normal distribution with mean 6 and variance 1/ 3" We

can explicitly compute the variance as n — oo. First note that

Za M2t _/ (K ) ~ta)(t)[2dt. (4.7)
We begin to compute (K5'a)(t). Using Table 9.1 in Samko et.al. [20] we find that
1 LG/2—H) yo-n
(Ki'a)) =V s 5
with Vg as in (2.6). Plugging in this expression in (4.7) yields the variance as
n — 0o,
1 1 (2—2H)T(2-2H)? =H(1—2H)(2—-2H)T(2 - 2H)

Py af Vu  T(3/2—H)? N cos(mH)T'(3/2 — H)?

JIJ
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We can compare this estimator with the simple mean Yr/T = Y; which is un-
biased and has variance 1 for all H € (0,1). The variance of the estimator 6.,
as a function of H, is illustrated in figure 1. We conclude from this figure that
the estimator o, has significantly lower variance than the simple mean for small

values of H, has the same variance for H = 1/2 and has negligible lower variance
for H € (1/2,1).

Remark 4.1. The results obtained in Example 4.5 are analogous to the results in
Norros et.al. [18], where the authors derive and apply a Girsanov transformation.
The explanation is that we have in fact a Girsanov type formula of ¥ in terms of
the coefficients in the representation (3.1). Define the measure Q by

d G 07
ﬁ = exp QZajfj — 52(1?
7j=1 Jj=1

Since a(-) € V(L*(T)) the sequence {a;}{° € I*(N) and by the Cameron-Martin
Theorem, see Theorem 7.7, p. 21 in Malliavin (1997) [14] the y;’s are i.i.d. N(0,1)
under Q. Hence, the process Y is the fractional Brownian motion under . We note
that this holds for all drift functions a(-) € V(L?(T)) and generalizes the results in
Norros et.al. [18]. Another way to see this is to note that by Proposition 3.1

> aj& =Tpn(V™'a) = 8(a), and Y a? =||al3,,
j=1

j=1
and apply the Girsanov transformation in Decreusefond and Ustiinel [8].

Example 4.6 (Stochastic differential equations). Let X be a Volterra type
process with kernel V' satisfying the integration by parts formula (4.2) and denote
the associated reproducing kernel Hilbert space by H, as usual. Suppose that u is
an adapted process such that ]E||u||2LZ(T) < 0o and that Vu is observable. Let Y be
the process defined by

Y(t) = 0 / V(b syus)ds + X(t), teT. (4.8)

For questions concerning existence of solutions of SDE’s driven by fractional Brow-
nian motion we refer to Coutin and Decreusefond (1998) [5]. Since Vu takes val-
ues in H it may be written as, (Vu)(t) = X272, u;¥;(t), t € T, where, u; =
(u(-),%;(-)yr2(T), and {t;}]° an orthonormal basis in L?(T). Similar to Example

4.4 we can now derive the maximum likelihood estimator, én, of 4 as,
i1 UsYj
Nom .2
> j=1Uj
The final example before considering consistency of the estimators is estimation

of the mean reverting parameter in an Ornstein-Uhlenbeck process driven by the
fractional Brownian motion.

On

Example 4.7 (Estimation of the mean reverting parameter). Let the pro-
cess Y = {Y;},. satisfy the equation,

¢
Y; = o/ a(Y;)ds + B, Y, =0, (4.9)

0
where 6 is an unknown parameter to be estimated and { B/} ¢ 18 the fractional

Brownian motion. We assume that a(-) is such that there exists a solution to
(4.9) with Y having almost surely continuous sample paths and such that A(t) £
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fg’ a(Y;)ds belongs to H. By this assumption A may be represented as, A(t) =
Z;il AJ‘\I’j(t), t € T, where,

A5 = (AC), ) = (VT AC), VI () ey
- / (K A) (t)py (£t = / AWV ) (8t
T T

Similar to Example 4.4 we can derive the maximum likelihood estimator, én, of 6
as,
n
6 — 2 =1 Ay
n — n 2 "
4.2. Consistency of estimators. In this last part of the paper we discuss con-
sistency of the estimators in the different examples in the previous section. In
this section we assume that all functions and processes are defined on R} and the
subscript T indicates the restriction to the interval [0, T].
Let X be a Volterra type process with kernel V satisfying the integration by parts

formula (4.2) and having Hy as the associated reproducing kernel Hilbert space on
the interval [0,T]. We denote by {¢]} an orthonormal basis of L?([0,77) and

{lIlf}fo the associated basis in Hz. Suppose that A € L?(Qr; Hr) for each T > 0,
and that A is adapted. We define the process Y by
Y(t) = 0A(t) + X(8), Yo =0.

From the examples in the previous section we know that we can derive the maximum
likelihood estimator, 82, of § as,

00 AT, T
6T — 214 Y
oco [ T\2 *
2= (A7)
The following theorem gives a sufficient condition for consistency of the estimator
6L, as T — oo.

Theorem 4.1. Suppose that X, Y, A and égo are as above. If E;’il (AJT)2 — 00
a.s. as T — oo, then 6L — 6 a.s.

Proof. Since y] = AT + ¢ we have that

[e%s} T T e} T ¢T
gr_Zim Ay XA
< Y (A])? e (A7)
By Proposition 3.1, My £ Y ATE =0 (AI"[O,T]) and by a straightforward gener-
alization of Theorem 4.7 in Decreusefond and Ustiinel [8] to Volterra type processes,
My is a martingale with associated Doob-Meyer process

T 0o
_ 2
0r= [ (@] ds = 14, = ST
j=1
which tends to infinity almost surely as 7' — oo, by assumption. From the law of
large numbers for martingales it follows that, as T — oo,
Mr
(M)

Hence, 87 — 6 a.s. O

=0, as.on {{M), = oo}

We will now show how to apply this theorem in some of the examples in the
previous section.

Example 4.5 (continued). In the case where A(t) = ¢t we computed the sum
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Yo AT =322 a] for T = 1. To find the corresponding expression for arbitrary
T we proceed as follows. Assume that {t;}° is an orthonormal basis of L*(I).
Then we can construct an orthonormal basis of L2(T), {ij}fo by stretching and
rescaling. Simply take

¥ (s) = }T«m(sm, i=19..

Indeed,

T - - 1 - 1 1 1
/0 ST ()97 (s)ds = / T (UT); (T Tt = / S0y (T

1 ifi=
_/0 ¢z(t)¢](t)dt_{ 0 lf'l;éj

The §]-T’s are i.i.d. N(0,1) and the coefficients ajT can be related to a; as,
T T 1
ol = /0 (K5 a)(s)0T (s)ds = /0 Csi /2 HyT (s)ds = C /0 (¢T) M2 H T (¢T)Tdt

1 1
=C / (tT)lﬂ_Hi@bj(t)Tdt: T -H / CtP~Hoy(t)dt = T ~Ha;.
0 VT 0

Therefore, 3372 (a] )> = T*7*# 3°7° | a7 — o0, as T — oco. Hence the condition in

Theorem 4.1 is satisfied and the estimator T, is consistent.

Example 4.6 (continued). It is straightforward to apply Theorem 4.1 in the
case of a stochastic differential equation of the form (4.8). To obtain consistency of

the estimator it is sufficient to verify that fOTu(t)zdt — o0 a.s. as T — oo.

Example 4.7 (continued). To derive consistency in the case of a fractional
Ornstein-Uhlenbeck process by applying Theorem 4.1 we need to verify that, as
T — o0,

/T [(VA)(5)]* dt — o.
0

Unfortunately, we have not been able to verify this condition and a proof can not
be included in this paper.
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FIGURE 1. Variance of the estimator f in Example 4.5.
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