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Abstract. For the stationary loss systems M/M/m/K and GI/M/m/K, we
study two quantities: the number of lost customers during the time interval

(0, t] (the first system only), and the number of lost customers among the first
n customers to arrive (both systems). We derive explicit bounds for the total
variation distances between the distributions of these quantities and compound
Poisson-geometric distributions. The bounds are small in the light traffic case,
i.e., when the loss of a customer is a “rare” event. To prove our results, we

show that the studied quantities can be interpreted as accumulated rewards of

stationary renewal reward processes, embedded into the queue length process
or the process of queue lengths immediately before arrivals of new customers,

and apply general results by Erhardsson on compound Poisson approximation
for renewal reward processes.

1. Introduction

In this paper we consider the two standard queueing systems M/M/m/K and
GI/M/m/K. In both of these, customers arrive to a system according to a renewal
process in continuous time; service times for different customers are exponentially
distributed and independent of each other and of the arrival process; the number of
servers is m; and all customers arriving to the system at a time when K customers
are already receiving service or waiting to receive service, are lost. In the first
system the arrival process is homogenous Poisson. Both are examples of loss (or
finite waiting room) systems.

For such systems it is clearly of great interest to know, at least under stationarity,
the probability ploss that an arriving customer is lost. A classical result, first derived
in [5] (one of Erlang’s pioneering papers which mark the beginning of queueing
theory as a research area in its own right) is the Erlang loss formula: for the
stationary loss system M/M/K/K with birth intensity β and death intensity δ,

ploss =
( K∑
j=0

1
j!

(
β

δ
)j
)−1 1

K!
(
β

δ
)K .

Expressions for ploss have subsequently been derived for more general stationary loss
systems. For example, in [7] and [10] this was done for the GI/M/K/K system,
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while it was shown in [9] that the Erlang loss formula holds unchanged for the
M/G/K/K system, i.e., for arbitrary service time distributions.

Another closely related and very important object of study for a loss system is
the process of overflows, i.e., the point process defined as the collection of time
points when an arriving customer is lost. For the GI/M/m/K system, the process
of overflows is a renewal process, as was first observed for the GI/M/K/K system
in [7]. The Laplace-Stieltjes transform of the distribution of the time between
successive overflows for the GI/M/1/K system was derived in [3], and this result
is easily generalized to the GI/M/m/K system, as pointed out in [6].

The present paper is devoted to two random variables connected to the process
of overflows: Φt and Ψn, defined as the number of lost customers during the time
interval (0, t], and the number of lost customers among the first n customers to
arrive, respectively. These have previously received comparatively little attention.
Of course, Φt is just the number of overflows during (0, t], so for the GI/M/m/K
system it follows from the above mentioned facts that the distribution of Φt is,
in principle, known. However, in practice it is too cumbersome to compute this
distribution exactly (or numerically) unless K and t are small. There also exists
a central limit theorem for the number of renewals during an interval (0, t], which
can be applied to Φt (see Section VI.4 in [1]), but this theorem is of no use when
the loss of a customer is a “rare” event (i.e., in the light traffic case).

Here, for the stationary M/M/m/K system, we instead derive an explicit bound
for the total variation distance between the distribution of Φt and a compound
Poisson-geometric distribution. The two parameters of this approximating dis-
tribution are explicitly calculated. The bound is small in the light traffic case.
Hence, our result complements the central limit theorem, and can in the light
traffic case be seen as a distributional counterpart to the Erlang loss formula. Ap-
propriately, for the M/M/K/K system the mean of our approximating distribution
is E(Φt) = βtploss.

For the GI/M/m/K system, we derive a bound for the total variation distance
between the distribution of Ψn and another compound Poisson-geometric distri-
bution. Here, the total variation distance bound and the two parameters of the
approximating distribution can not in general be given in a simple explicit form,
but they can be calculated by solving four systems of linear equations of dimension
at most K. Just as for Φt, in the light traffic case the bound is small, and the
result can be seen as a distributional counterpart to the Erlang loss formula. For
the M/M/m/K system we derive completely explicit expressions for all quantities
involved. For the M/M/K/K system the mean of our approximating distribution
is E(Ψn) = nploss.

To prove our results, we show that Φt can be interpreted as the accumulated
reward of a stationary renewal reward process embedded into the queue length
process, where the renewals occur at those time points when the queue length
process has just made a transition from state {0} to state {1}. This permits the use
of general results on compound Poisson approximation for renewal reward processes
given in [4]. Ψn is handled by a similar argument applied to the (discrete time)
Markov chain of queue lengths immediately before arrivals of new customers.

The paper is organized as follows. In Section 2 we give some notational con-
ventions and definitions, and state some well-known results about birth and death
processes. In Section 3 the results about the random variable Φt for the station-
ary M/M/m/K system are stated and proven. In Section 4 the results about the
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random variable Ψn for the GI/M/m/K and M/M/m/K systems are stated and
proven. Section 5 contains some numerical evaluations of the bounds derived in the
previous sections.

2. Preliminaries

We use the following notation for sets of numbers: R = the real numbers, Z =
the integers, R+ = [0,∞), R′+ = (0,∞), Z+ = {0, 1, 2, ...}, and Z ′+ = {1, 2, ...}.

For any random element X in any measurable space (S,F), we denote the dis-
tribution of X by L(X).

For any finite set S and I = R or I = R+, we denote by D(I, S) the space of all
functions f : I → S which are right-continuous and have left hand limits at every
point. We consider D(I, S) as a measurable space equipped with the σ-algebra
generated by the finite-dimensional sets. We define, for each A ⊂ S and t ∈ I, the
functional τ tA : D(I, S)→ R′+ ∪ {∞} by

τ tA(f) := inf{u ∈ R′+; f(t+ u) ∈ A} ∀f ∈ D(I, S),

and the functional τ̄ tA : D(I, S)→ R+ ∪ {∞} by

τ̄ tA(f) := inf{u ∈ R+; f(t+ u) ∈ A} ∀f ∈ D(I, S),

with the convention that inf ∅ =∞. Similarly, for I = Z or I = Z+, we denote by
SI the space of all sequences (functions) f : I → S. We define, for each A ⊂ S and
t ∈ I, the functional τ tA : SI → Z ′+ ∪ {∞} by

τ tA(f) := inf{u ∈ Z ′+; f(t+ u) ∈ A} ∀f ∈ SI ,

and the functional τ̄ tA : SI → Z+ ∪ {∞} by

τ̄ tA(f) := inf{u ∈ Z+; f(t+ u) ∈ A} ∀f ∈ SI .
For brevity we will use the notation τA(·) := τ0

A(·) and τ̄A(·) := τ̄0
A(·).

For I = R or I = Z we define N (I × Z+) as the space of counting measures
(i.e., integer valued Radon measures) on I × Z+. We consider N (I × Z+) as a
measurable space equipped with the σ-algebra generated by the finite-dimensional
sets. A random element in N (I × Z+) is called a point process. For any random
sequence {(Xi, Yi); i ∈ Z} such that (Xi, Yi) takes values in I × Z+ for each i ∈ Z,
we define the point process ξ generated by {(Xi, Yi); i ∈ Z} as

ξ(·) :=
∞∑

i=−∞
I{(Xi, Yi) ∈ ·}.

A (Palm version of a) renewal reward process (in the sense of Definition 4.1 in [4]) is
a point process generated by a random sequence {(Xi, Yi); i ∈ Z} such that (Xi, Yi)
takes values in I × Z+ for each i ∈ Z, X0 ≡ 0, and {(Xi+1 −Xi, Yi); i ∈ Z} is an
I.I.D. sequence.

For any two probability measures ν1 and ν2 on any measurable space (S,F) we
define the total variation distance dTV (ν1, ν2) by

dTV (ν1, ν2) := sup
A∈F
|ν1(A)− ν2(A)|.

A nonnegative random variable W is said to have a compound Poisson distribu-
tion POIS(ν), where ν is a measure on R′+ such that

∫∞
0

(1 ∧ x)dν(x) < ∞, if the
characteristic function of W is E(eitW ) = exp(−

∫
R′+

(1 − eitx)dν(x)) ∀t ∈ R. If
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λ := ν(R′+) < ∞, then POIS(ν) = L(
∑U
i=1 Ti), where the variables {Ti; i ∈ Z ′+}

and U are independent, L(Ti) = ν/λ ∀i ∈ Z ′+, and U ∼ Po(λ). If ν = λνa for some
a > 0, where νa(k) := (1 − a)k−1a ∀k ∈ Z ′+, then POIS(ν) is called a compound
Poisson-geometric (or Pólya-Aeppli) distribution.

By a birth and death process η on the state space {0, ...,M} (M ∈ Z ′+), we mean
a Markovian pure jump process (for a definition of such a process, see Chapter II
in [1]) on {0, ...,M}, with an intensity matrix Q whose off-diagonal elements are
given by

Qi,j :=


βi, if i ≤M − 1 and j = i+ 1;
δi, if i ≥ 1 and j = i− 1;
0, otherwise.

Define, for convenience, for each i, k ∈ {0, ...,M} such that i ≤ k,

πi,k :=

{
(βi/δk)

∏k−1
j=i+1(βj/δj), if i < k;

1, if i = k.

It is well-known that η has a unique stationary distribution µ, defined by

µ(k) =
π0,k∑M
i=0 π0,i

∀k ∈ {0, ...,M}.(2.1)

It is also well-known that, for each a, k, b ∈ {0, ...,M} such that a < k < b,

P (τa(η) < τb(η)|η0 = k) = (
b−1∑
j=a

1
βjπ0,j

)−1
b−1∑
i=k

1
βiπ0,i

,(2.2)

and that, for each a, k ∈ {0, ...,M} such that a < k,

E(τa(η)|η0 = k) =
k−1∑
i=a

M∑
j=i+1

πi,j
βi

.(2.3)

By a birth-death chain η on the state space {0, ...,M}, we mean an irreducible
Markov chain on the state space {0, ...,M} with a transition matrix p given by

pi,j :=


pi, if i ≤M − 1 and j = i+ 1;
qi, if i ≥ 1 and j = i− 1;
ri, if i = j;
0, otherwise.

The results (2.1), (2.1) and (2.3) hold for the birth-death chain η as well, if βi and
δi are replaced by pi and qi for each i ∈ {0, ...,M}.

3. The number of lost customers during (0, t]

Theorem 3.1. Let Φt be the number of lost customers during the time (0, t] in
a stationary M/M/m/K queueing system (m ≤ K) with arrival intensity β and
service intensity δ. Let σ0 := 1 and σj :=

∏j
i=1(i ∧m) ∀j ∈ {1, ...,K}. Then,

dTV (L(Φt),POIS(λνθ)) ≤ H(λ, θ)3βt(
K∑
j=0

1
σj

(
β

δ
)j)−2 1

σ2
K

(
β

δ
)2K
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×
(

2
K−2∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 3 +

2β
mδ

+ 2(
K∑
j=0

1
σj

(
β

δ
)j)−1

K∑
r=1

1
σr

(
β

δ
)r
r−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i

)

+2(
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
(

(
K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−2∑
i=0

K−1∑
j=i+1

σi
σj

(
β

δ
)j−i

+
β

mδ
(1 +

β

mδ
)−1 + (1 +

β

mδ
)−1(

K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−1∑
i=0

σi
σK

(
β

δ
)K−i

)
,

where νθ(k) := (1− θ)k−1θ ∀k ∈ Z ′+, and:

λ = βt(
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K(

K∑
i=0

σi
σK

(
β

δ
)K−i)−1; θ = (

K∑
i=0

σi
σK

(
β

δ
)K−i)−1;

H(λ, θ) ≤


( 1
λθ ∧ 1) exp(λ), if θ ∈ (0, 1);

1
λθ(2θ−1)

(
1

4λθ(2θ−1) + log+(2λθ(2θ − 1))
)
∧ 1, if θ ∈ [ 1

2 , 1);
θ2

λ(5θ−4) , if θ ∈ ( 4
5 , 1).

Proof. Consider an M/M/m/K queueing system to which the first customer arrives
at time t = 0. Define the random element η+ in D(R+, {0, ...,K+2}) as the number
of customers in the system at each time t ∈ R+, except if the buffer is full, in which
case η+

t also gives information about how many customers have been lost since the
buffer became full: η+

t = {K} if 0 customers have been lost, η+
t = {K + 1} if an

odd number of customers have been lost, and η+
t = {K + 2} if an even number

≥ 2 have been lost. η+ is a Markovian pure jump process on {0, ...,K + 2} with an
intensity matrix Q whose off-diagonal elements are given by

Qi,j :=



β, if i ≤ K + 1 and j = i+ 1;
β, if i = K + 2 and j = K + 1;
(i ∧m)δ, if 1 ≤ i ≤ K and j = i− 1;
mδ, if i ≥ K + 1 and j = K − 1;
0, otherwise.

This can be proven by first showing that the random sequence {(η+
Si
, Si−Si−1); i ∈

Z ′+}, where 0 = S0 < S1 < S2 < ... are the jump times of η+, is a Markov chain on
the state space {0, ...,K + 2} ×R′+ with transition function p defined by

p((i, x), {j} × (y,∞)) :=
Qi,j
|Qi,i|

exp(−|Qi,i|y) ∀i, j ∈ {0, ...,K + 2}, x, y ∈ R′+.

The strong Markov property implies that η+ is regenerative with regeneration times
{0} ∪ {t ∈ R′+; η+

t− = 0, η+
t = 1}. Since E(τ0(η+)) < ∞, there exists a random

element η in D(R, {0, ...,K + 2}) which is a stationary version of η+ (with index
set R). Clearly,

Φt = card{s ∈ (0, t]; ηs− ≥ K + 1, ηs 6= ηs−} ∀t ∈ R+.

Define the random sequence {(Xi, Yi); i ∈ Z} as follows. Let {Xi; i ∈ Z} (where
... < X−1 < X0 ≤ 0 < X1 < ...) be the random times {t ∈ R; ηt− = 0, ηt = 1}, and
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let

Yi := card{t ∈ R; ηt− ≥ K + 1, ηt 6= ηt−, Xi ≤ t < Xi+1} ∀i ∈ Z.

Define the random element ξ inN (R,Z+) as the point process generated by {(Xi, Yi); i ∈
Z}. Define the random element (ηo, ξo) in D(R, {0, ...,K + 2}) × N (R × Z+) as
a Palm version of (η, ξ) (see Section 3.2 in [8]), and define the random sequence
{(Xo

i , Y
o
i ); i ∈ Z} as the coordinates of the points of ξo. It is clear that L(ηo

t ; t ∈
R+) = L(η+; t ∈ R+). Define also {T o

i ; i ∈ Z} by T o
i := Xo

i+1 −Xo
i ∀i ∈ Z. The

relation between (ηo, ξo) and (η, ξ) is given by the Palm inversion formula: for each
measurable function g : D(R, {0, ...,K + 2})×N (R× Z+)→ R+, it holds that

E(g(η, ξ)) =
E
(∫ T o

0
0

g(θt(ηo, ξo))dt
)

E(T o
0 )

,(3.1)

where θ : R×D(R, {0, ...,K+2})×N (R×Z+)→ D(R, {0, ...,K+2})×N (R×Z+)
is the shift operator. With the notation µY := L(Y o

0 ) and µ′Y := µY (· ∩ Z ′+), the
triangle inequality implies that

dTV (L(Φt),POIS(
tµ′Y
E(T o

0 )
)) ≤ dTV (L(Φt),L(

∫
(0,t]×Z′+

vdξ(u, v)))

+dTV (L(
∫

(0,t]×Z′+
vdξ(u, v)),POIS(

tµ′Y
E(T o

0 )
)),

and the basic coupling inequality implies that dTV (L(Φt),L(
∫

(0,t]×Z′+
vdξ(u, v))) ≤

2P (τ̄{K+1,K+2}(η) < τ̄0(η)). For the second term, we note that ξ is a stationary
(version of a) renewal reward process in the sense of Definition 4.1 in [4]. Hence,
Theorem 5.1 in [4] gives the bound

dTV (L(
∫

(0,t]×Z′+
vdξ(u, v)),POIS(

tµ′Y
E(T o

0 )
))

≤ H(
tµ′Y
E(T o

0 )
)
3tE(Y o

0 )
E(T o

0 )

(E(T o
0 Y

o
0 )

E(T o
0 )

+
E((T o

0 )2)E(Y o
0 )

E(T o
0 )2

)
,

(3.2)

where H(E(T o
0 )−1tµ′Y ) ≤ ((E(T o

0 )−1tµY (1))−1 ∧ 1) exp(E(T o
0 )−1tµY (Z ′+)), unless

{kµY (k); k ∈ Z ′+} is monotonically decreasing towards 0, in which case

H(
tµ′Y
E(T o

0 )
) ≤ 1

∆Y (1)

( 1
4∆Y (1)

+ log+ 2∆Y (1)
)
∧ 1,

where ∆Y (1) := E(T o
0 )−1t(µY (1) − 2µY (2)). Moreover, a recent result, Theorem

2.5 in [2], tells us that if

κ :=
∑∞
k=2 k(k − 1)µY (k)∑∞

k=1 kµY (k)
<

1
2
,

then it also holds that

H(
tµ′Y
E(T o

0 )
) ≤ E(T o

0 )
t(1− 2κ)

∑∞
k=1 kµY (k)

.

We need to compute the quantities appearing in (3.2). From (3.1) we get that
E(T o

0 ) = E(τ1(η)|η0 = 0)/µ(0), where µ is the stationary distribution of η. It is
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well-known that E(τ1(η)|η0 = 0) = β−1, and it is easy to check that µ is given by

µ(r) =
( K∑
j=0

1
σj

(
β

δ
)j
)−1 1

σr
(
β

δ
)r ∀r ∈ {0, ...,K − 1};

µ(K) =
β

mδ
(1 +

β

mδ
)−1µ(K − 1);

µ(K + 1) = (
β

mδ
)2(1 +

2β
mδ

)−1µ(K − 1);

µ(K + 2) = (
β

mδ
)3(1 +

β

mδ
)−1(1 +

2β
mδ

)−1µ(K − 1),

implying that E(T o
0 ) = β−1

∑K
j=0 σ

−1
j (β/δ)j . Next, define the random element ηK

in D(R, {0, ...,K}) by ηKt := ηt ∧K ∀t ∈ R. It is not difficult to show that ηK is a
stationary birth and death process with an intensity matrix QK with off-diagonal
elements given by

QKi,j :=


β, if i ≤ K − 1 and j = i+ 1;
(i ∧m)δ, if i ≥ 1 and j = i− 1;
0, otherwise.

Denote the stationary distribution of ηK by µK . From (3.1), the definition of ηK ,
(2.1) and (2.3), we get:

E((T o
0 )2)

2E(T o
0 )

= E(X1) =
K∑
r=1

E(τ0(ηK)|ηK0 = r)µK(r) + E(τ1(ηK)|ηK0 = 0)

=
1
β

( K∑
r=1

µK(r)
r−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 1

)

=
1
β

(
(
K∑
j=0

1
σj

(
β

δ
)j)−1

K∑
r=1

1
σr

(
β

δ
)r
r−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 1

)
.

We now turn our attention to µ′Y . The strong Markov property implies that
µY (k) = P (τK+1(η) < τ0(η)|η0 = 1)(1 − θ)k−1θ ∀k ∈ Z ′+, where θ = P (τ0(η) <
τK+1(η)|η0 = K − 1)mδ/(β + mδ). This implies that POIS(E(T o

0 )−1tµ′Y ) =
POIS(λνθ), where λ = E(T o

0 )−1tP (τK+1(η) < τ0(η)|η0 = 1), and also, after a
little bit of work, that H(λ, θ) := H(E(T o

0 )−1tµ′Y ) satisfies the inequalities claimed
in Theorem 3.1. Using (2.2) and the fact that η is “almost” a birth and death
process, we get:

P (τK+1(η) < τ0(η)|η0 = 1) =
( K∑
j=0

σj(
δ

β
)j
)−1 =

1
σK

(
β

δ
)K(

K∑
i=0

σi
σK

(
β

δ
)K−i)−1;

θ =
( K∑
j=0

σj(
δ

β
)j
)−1

σK−1(
δ

β
)K−1(1 +

mδ

β
)

mδ

β +mδ
= (

K∑
i=0

σi
σK

(
β

δ
)K−i)−1.
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Hence, E(Y o
0 ) = µY (Z ′+)θ−1 = σ−1

K (β/δ)K . Similarly,

P (τ̄{K+1,K+2}(η) < τ̄0(η)) = µ({K + 1,K + 2}) +
K∑
r=1

µ(r)(
K∑
i=0

σi(
δ

β
)i)−1

r−1∑
j=0

σj(
δ

β
)j

= (
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K

β

mδ
(1 +

β

mδ
)−1 + (

K∑
j=0

1
σj

(
β

δ
)j)−1(

K∑
i=0

σi(
δ

β
)i)−1

×
(K−2∑
i=0

K−1∑
j=i+1

σi
σj

(
β

δ
)j−i +

1
σK

(
β

δ
)K(1 +

β

mδ
)−1

K−1∑
j=0

σj(
δ

β
)j
)

= (
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
(

(
K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−2∑
i=0

K−1∑
j=i+1

σi
σj

(
β

δ
)j−i

+
β

mδ
(1 +

β

mδ
)−1 + (1 +

β

mδ
)−1(

K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−1∑
i=0

σi
σK

(
β

δ
)K−i

)
.

It remains to calculate E(T o
0 Y

o
0 ). Define the random element ηR in D(R, {0, ...,K+

2}) by ηRt := η(−t)− ∀t ∈ R; i.e., ηR is the reversed Markovian pure jump pro-
cess corresponding to η. It is well-known, see e.g. Section II.5 in [1], that ηR is
a stationary Markovian pure jump process with intensity matrix QR defined by
QRi,j := µ(j)Qj,i/µ(i) ∀i, j ∈ {0, ...,K + 2}. Also, define the random element ηK,R

in D(R, {0, ...,K}) by ηK,Rt := ηK(−t)− ∀t ∈ R. ηK is reversible (since it is a birth and
death process), so ηK,R has intensity matrix QK,R = QK . Dominated convergence
implies that E(T o

0 Y
o
0 ) = limn→∞E(T o

0 Y
1/n
0 ), where

Y
1/n
0 := n

∫ (T o
0−1/n)+

0

I{ηo
t ≥ K + 1, ηo

t+1/n 6= ηo
t }dt ∀n ∈ Z ′+,

so (3.1) gives

E(T o
0 Y

o
0 )

E(T o
0 )

= lim
n→∞

nE
(
(X1 −X0)I{X1 >

1
n
, η0 ≥ K + 1, η1/n 6= η0}

)
.

We note that, on the set {η0 ≥ K + 1, η1/n 6= η0}, only four values are possible
for the pair (η0, η1/n), so the expectation can be written as a sum of four terms.
Conditioning on σ(ηt; t ∈ R+) and σ(ηt; t ∈ (−∞, 1/n]) for each of these terms
gives:

lim
n→∞

nE
(
(X1 −X0)I{X1 >

1
n
, η0 ≥ K + 1, η1/n 6= η0}

)
= lim
n→∞

nµ(K + 1)mδ
1
n

(
E(τ0(ηR)|η0 = K + 1) +

1
n

+ E(τ0(η)|η0 = K − 1) +
1
β

)
+ lim
n→∞

nµ(K + 1)β
1
n

(
E(τ0(ηR)|η0 = K + 1) +

1
n

+ E(τ0(η)|η0 = K + 2) +
1
β

)
+ lim
n→∞

nµ(K + 2)mδ
1
n

(
E(τ0(ηR)|η0 = K + 2) +

1
n

+ E(τ0(η)|η0 = K − 1) +
1
β

)
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+ lim
n→∞

nµ(K + 2)β
1
n

(
E(τ0(ηR)|η0 = K + 2) +

1
n

+ E(τ0(η)|η0 = K + 1) +
1
β

)
= µ(K + 1)mδ

(
E(τK−1(ηR)|η0 = K + 1) + 2E(τ0(η)|η0 = K − 1) +

1
β

)
+µ(K + 1)β

(
E(τK−1(ηR)|η0 = K + 1) + 2E(τ0(η)|η0 = K − 1) +

1
mδ

+
1
β

)
+µ(K + 2)mδ

(
E(τK−1(ηR)|η0 = K + 2) + 2E(τ0(η)|η0 = K − 1) +

1
β

)
+µ(K + 2)β

(
E(τK−1(ηR)|η0 = K + 2) + 2E(τ0(η)|η0 = K − 1) +

1
mδ

+
1
β

)
,

where we used the fact that

E(τ0(ηR)|η0 = K − 1) = E(τ0(ηK,R)|ηK,R0 = K − 1)

= E(τ0(ηK)|ηK0 = K − 1) = E(τ0(η)|η0 = K − 1),

and also that E(τK−1(η)|η0 = K + 1) = E(τK−1(η)|η0 = K + 2) = 1/(mδ).
Moreover, using (2.3) it is not difficult to show that

E(τK−1(ηR)|η0 = K + 1) =
1
β

β

mδ
(1 +

β

mδ
)(1 +

2β
mδ

)−1

+
1
β

(
β

mδ
)3(1 +

β

mδ
)−1(1 +

2β
mδ

)−1 +
1
β

β

mδ
(1 +

β

mδ
)−1;

E(τK−1(ηR)|η0 = K + 2) = E(τK−1(ηR)|η0 = K + 1) +
1
β

β

mδ
(1 +

β

mδ
)−1,

so we get:

E(T o
0 Y

o
0 )

E(T o
0 )

= µ({K + 1,K + 2})(β +mδ)
(
E(τK−1(ηR)|η0 = K + 1)

+2E(τ0(η)|η0 = K − 1)
)

+ (1 +
β

mδ
+
mδ

β
)µ(K + 1) + (2 +

β

mδ
+
mδ

β
)µ(K + 2)

= (
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
( β

mδ
(1 +

β

mδ
)(1 +

2β
mδ

)−1

+(
β

mδ
)3(1 +

β

mδ
)−1(1 +

2β
mδ

)−1 +
β

mδ
(1 +

β

mδ
)−1 + 2

K−2∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i

+(1 +
β

mδ
+ (

β

mδ
)2)(1 +

2β
mδ

)−1 + (1 +
2β
mδ

+ (
β

mδ
)2)

β

mδ
(1 +

β

mδ
)−1(1 +

2β
mδ

)−1
)

= (
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
(

2
K−2∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 1 +

2β
mδ

)
.
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Example 3.1. Let Φt be the number of lost arriving customers during the time
(0, t] in a stationary M/M/1/K queueing system with arrival intensity β and service
intensity δ. Let ρ = β/δ < 1. Then σj = 1 ∀j ∈ {1, ...,K}, and

dTV (L(Φt),POIS(λνθ)) ≤ H(λ, θ)3βt
(1− ρ)2

(1− ρK+1)2
ρ2K

×
( 2ρ

1− ρ
(K − 1− ρ2(1− ρK−1)

1− ρ
) + 3 + 2ρ

+
2ρ2

(1− ρ)2(1− ρK+1)
(1− ρ2K+1 − (2K + 1)(1− ρ)ρK)

)

+
2(1− ρ)ρK+1

1− ρK+1

( 1
1− ρK+1

(K − 1− ρ(1− ρK−1)
1− ρ

) +
1

1 + ρ
(1 +

1− ρK

1− ρK+1
)
)
,

where

λ = βt
(1− ρ)2

(1− ρK+1)2
ρK ; θ =

1− ρ
1− ρK+1

.

In particular, if ρ < 1 is constant and t := t(K) is chosen so that

lim
K→∞

E(Φt) = lim
K→∞

βt
1− ρ

1− ρK+1
ρK = c > 0,

then, as K → ∞, dTV (L(Φt),POIS(λνθ)) = O(KρK), and POIS(λνθ) converges
weakly to POIS(c(1− ρ)ν(1−ρ)).

Example 3.2. Let Φt be the number of lost arriving customers during the time
(0, t] in a stationary M/M/K/K queueing system with arrival intensity β and
service intensity δ. Then σj = j! ∀j ∈ {1, ...,K}. If ρ = β/δ is constant and
t := t(K) is chosen so that

lim
K→∞

E(Φt) = lim
K→∞

βt(
K∑
j=0

1
j!
ρj)−1 1

K!
ρK = c > 0,

then, as K →∞, dTV (L(Φt),POIS(λνθ)) = O( logK
K! ρ

K), and POIS(λνθ) converges
weakly to Po(c). To prove this, note the following facts:

K∑
i=0

i!
K!

ρK−i − 1 =
ρ

K
(1 +

ρ

K − 1
+ ...+

ρK−1

(K − 1)!
) ≤ ρ

K
eρ;

K−2∑
i=0

K−1∑
j=i+1

i!
j!
ρj−i =

K−1∑
j=1

j−1∑
i=0

i!
j!
ρj−i = ρ

K−1∑
j=1

1
j

+
K−1∑
j=2

j−2∑
i=0

i!
j!
ρj−i;

K−1∑
j=2

j−2∑
i=0

i!
j!
ρj−i =

K−1∑
j=2

ρ2

j(j − 1)
(1 +

ρ

j − 2
+ ...+

ρj−2

(j − 2)!
) <∞;

K∑
r=1

1
r!
ρr

r−1∑
i=0

K∑
j=i+1

i!
j!
ρj−i =

K∑
r=1

1
r!
ρr

K∑
j=1

(j−1)∧(r−1)∑
i=0

i!
j!
ρj−i
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=
K∑
r=1

1
r!
ρr

r∑
j=1

j−1∑
i=0

i!
j!
ρj−i +

K∑
j=2

1
j!
ρj

j−1∑
r=1

r−1∑
i=0

i!
r!
ρr−i <∞.

4. The number of lost customers among the first n

Theorem 4.1. Let ω be the number of customers immediately before successive
arrivals of new customers in a GI/M/m/K queueing system (m ≤ K) with inter-
arrival time distribution FA and service intensity δ. Assume that the Markov chain
ω is stationary with stationary distribution µ, and denote by ωR the reverse Markov
chain corresponding to ω. Let Ψn be the number of lost customers among the first
n customers to arrive. Then,

dTV (L(Ψn),POIS(λνθ)) ≤ H(λ, θ)3nµ(K)2
(
E(τ0(ωR)|ω0 = K)

+E(τ0(ω)|ω0 = K) + 2E(τ̄0(ω))
)

+ 2P (τ̄K(ω) < τ̄0(ω)),

where νθ(k) = (1 − θ)k−1θ ∀k ∈ Z ′+, λ = nµ(K)P (τ0(ω) < τK(ω)|ω0 = K),
θ = P (τ0(ω) < τK(ω)|ω0 = K), and

H(λ, θ) ≤


( 1
λθ ∧ 1) exp(λ), if θ ∈ (0, 1);

1
λθ(2θ−1)

(
1

4λθ(2θ−1) + log+(2λθ(2θ − 1))
)
∧ 1, if θ ∈ [ 1

2 , 1);
θ2

λ(5θ−4) , if θ ∈ ( 4
5 , 1).

Moreover, all quantities appearing in the bound can be calculated by solving four
systems of linear equations of dimension ≤ K.

Proof. Consider a GI/M/m/K queueing system to which the first customer arrives
at time t = 0. Define the random sequence {ω+

t ; t ∈ Z+} as the number of customers
in the system immediately before each successive arrival of a new customer (ω+

0 =
0). It is well-known, see e.g. Section XI.3 in [1], that ω+ is a Markov chain with
transition matrix p defined by

pi,j :=



∫
R+

(
i+1
i+1−j

)
(1− e−δt)i+1−je−δtjdFA(t), if j ≤ i+ 1 ≤ m;∫

R+

∫ t
0

(
m
m−j

)
(1− e−δ(t−y))m−je−δ(t−y)j

×(δm)i+1−m yi−m

(i−m)!e
−δmydydFA(t), if j < m < i+ 1 ≤ K;∫

R+
e−δmt (δmt)i+1−j

(i+1−j)! dFA(t), if m ≤ j ≤ i+ 1 ≤ K;

pK−1,j , if i = K;
0, if j > i+ 1.

ω+ is regenerative with regeneration times {t ∈ Z+;ω+
t = 0}. Since E(τ0(ω+)) <

∞, there exists a random sequence {ωt : t ∈ Z} which is a stationary version of ω+

(with index set Z). Clearly,

Ψn = card{t ∈ {1, ..., n};ωt = K} ∀n ∈ Z+.

In the same way as in the proof of Theorem 3.1, define the random sequence
{(Xi, Yi); i ∈ Z} as follows. Let {Xi; i ∈ Z} (where ... < X−1 < X0 ≤ 0 < X1 < ...)
be the random times {t ∈ Z;ωt = 0}, and let

Yi := card{t ∈ Z;ωt = K,Xi ≤ t < Xi+1} ∀i ∈ Z.
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Define the random element ξ inN (Z,Z+) as the point process generated by {(Xi, Yi); i ∈
Z}, and define the random element (ωo, ξo) ∈ {0, ...,K}Z ×N (Z × Z+) as a Palm
version of (ω, ξ). Define the random sequence {(Xo

i , Y
o
i ); i ∈ Z} as the coordinates

of the points of ξo, and define {T o
i ; i ∈ Z} by T o

i := Xo
i+1 −Xo

i ∀i ∈ Z. The Palm
inversion formula tells us that for each measurable function g : {0, ...,K}Z×N (Z×
Z+)→ R+, it holds that

E(g(ω, ξ)) =
E(
∑T o

0−1
i=0 g(θi(ωo, ξo)))

E(T o
0 )

,(4.1)

where θ : Z × {0, ...,K}Z × N (Z × Z+) → {0, ...,K}Z × N (Z × Z+) is the shift
operator. With the notation µY := L(Y o

0 ) and µ′Y := µY (· ∩ Z ′+), the triangle
inequality implies that

dTV (L(Ψn),POIS(
nµ′Y
E(T o

0 )
)) ≤ dTV (L(Ψn),L(

∫
(0,n]×Z′+

vdξ(u, v)))

+dTV (L(
∫

(0,n]×Z′+
vdξ(u, v)),POIS(

nµ′Y
E(T o

0 )
)),

and the basic coupling inequality implies that dTV (L(Ψn),L(
∫

(0,n]×Z′+
vdξ(u, v))) ≤

2P (τ̄K(ω) < τ̄0(ω)). For the second term, since ξ is a stationary (version of a)
renewal reward process in the sense of Definition 4.1 in [4], Theorem 5.1 in [4] gives
the bound

dTV (L(
∫

(0,n]×Z′+
vdξ(u, v)),POIS(

nµ′Y
E(T o

0 )
))

≤ H(
nµ′Y
E(T o

0 )
)
3nE(Y o

0 )
E(T o

0 )

(E(T o
0 Y

o
0 )

E(T o
0 )

+
E(T o

0 (T o
0 − 1))E(Y o

0 )
E(T o

0 )2

)
,

(4.2)

where H(E(T o
0 )−1nµ′Y ) ≤ ((E(T o

0 )−1nµY (1))−1∧1) exp(E(T o
0 )−1nµY (Z ′+)), unless

{kµY (k); k ∈ Z ′+} is monotonically decreasing towards 0, in which case

H(
nµ′Y
E(T o

0 )
) ≤ 1

∆Y (1)

( 1
4∆Y (1)

+ log+ 2∆Y (1)
)
∧ 1,

where ∆Y (1) := E(T o
0 )−1n(µY (1) − 2µY (2)). Again, Theorem 2.5 in [2] tells us

that if

κ :=
∑∞
k=2 k(k − 1)µY (k)∑∞

k=1 kµY (k)
<

1
2
,

then it also holds that

H(
nµ′Y
E(T o

0 )
) ≤ E(T o

0 )
n(1− 2κ)

∑∞
k=1 kµY (k)

.

From (4.1) we get that E(T o
0 )−1 = µ(0) and that E(T o

0 )−1E(Y o
0 ) = µ(K), where µ

is the stationary distribution of ω. We likewise get that

E(T o
0 (T o

0 − 1))
2E(T o

0 )
= E(τ̄0(ω)),

and that
E(T o

0 Y
o
0 )

E(T o
0 )

= µ(K)(E(τ0(ωR)|ω0 = K) + E(τ0(ω)|ω0 = K)).
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The strong Markov property implies that µY (k) = P (τK(ω) < τ0(ω)|ω0 = 0)(1 −
θ)k−1θ ∀k ∈ Z ′+, where θ = P (τ0(ω) < τK(ω)|ω0 = K). From this it follows that
POIS(E(T o

0 )−1nµ′Y ) = POIS(λνθ), where λ = E(T o
0 )−1nP (τK(ω) < τ0(ω)|ω0 = 0),

and that H(λ, θ) := H(E(T o
0 )−1nµ′Y ) satisfies the inequalities claimed in Theo-

rem 4.1.
The last assertion of the theorem is a consequence of the following well-known

facts. For each disjoint A ⊂ {0, ...,K} and B ⊂ {0, ...,K}, the function f : (A ∪
B)c → [0, 1] defined by f(j) := P (τ̄A(ω) < τ̄B(ω)|ω0 = j) ∀j ∈ (A ∪ B)c is the
unique solution of the system of linear equations f(j) −

∑K
k=0 pj,kf(k) = 0 ∀j ∈

(A ∪ B)c with boundary values f(j) = IA(j) ∀j ∈ A ∪ B. Similarly, the function
f1 : Ac → R+ defined by f1(j) := E(τ̄A(ω)|ω0 = j) ∀j ∈ Ac is the unique solution
of f1(j) −

∑K
k=0 pj,kf1(k) = 1 ∀j ∈ Ac with boundary values f1(j) = 0 ∀j ∈ A,

and the function f2 : Ac → R+ defined by f2(j) := E(τ̄A(ωR)|ω0 = j) ∀j ∈ Ac

is the unique solution of f2(j) −
∑K
k=0

µ(k)
µ(j) pk,jf2(k) = 1 ∀j ∈ Ac with boundary

values f2(j) = 0 ∀j ∈ A.

Theorem 4.2. Let ω be the number of customers immediately before successive
arrivals of new customers in a M/M/m/K queueing system (m ≤ K) with arrival
intensity β and service intensity δ. Assume that ω is stationary, and let Ψn be the
number of lost customers among the first n customers to arrive. Let σ0 := 1 and
σj :=

∏j
i=1(i ∧m) ∀j ∈ {1, ...,K}. Then,

dTV (L(Ψn),POIS(λνθ)) ≤ H(λ, θ)3n(
K∑
j=0

1
σj

(
β

δ
)j)−2 1

σ2
K

(
β

δ
)2K

×
(
K + 1 + 2

K−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 2

( K∑
j=0

1
σj

(
β

δ
)j
)−1

K−1∑
r=1

1
σr

(
β

δ
)r

r∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i

+2
( K∑
j=0

1
σj

(
β

δ
)j
)−1 1

σK
(
β

δ
)K

K−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 2

( K∑
j=0

1
σj

(
β

δ
)j
)−1

K∑
j=1

1
σj

(
β

δ
)j
)

+2(
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
(

1 + (
K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−2∑
i=0

K−1∑
j=i

σi
σj

(
β

δ
)j−i

)
,

where νθ(k) = (1− θ)k−1θ ∀k ∈ Z ′+, and:

λ = n(
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K(

K∑
i=0

σi
σK

(
β

δ
)K−i)−1; θ = (

K∑
i=0

σi
σK

(
β

δ
)K−i)−1;

H(λ, θ) ≤


( 1
λθ ∧ 1) exp(λ), if θ ∈ (0, 1);

1
λθ(2θ−1)

(
1

4λθ(2θ−1) + log+(2λθ(2θ − 1))
)
∧ 1, if θ ∈ [ 1

2 , 1);
θ2

λ(5θ−4) , if θ ∈ ( 4
5 , 1).

Proof. This is a special case of Theorem 4.1 where the interarrival time distribution
is exp(β−1). In this case it is straightforward to show, using partial integrations,
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that the transition matrix p of the Markov chain ω is given by

pi,j :=


β

β+(j∧m)δ

∏i+1
r=j+1

(r∧m)δ
β+(r∧m)δ , if j ≤ i+ 1 ≤ K;

pK−1,j , if i = K;
0, if j > i+ 1.

All quantities appearing in the total variation distance bound can be explicitly
computed, as follows. Let the random element η+ in D(R+, {0, ...,K + 2}) be the
Markovian pure jump process defined in the proof of Theorem 3.1. Let {χ+

t ; t ∈ Z+}
be the embedded Markov chain at jump times of η+, and let {χt; t ∈ Z} be a
stationary version of χ+ (with index set Z). Define {χK+1

t ; t ∈ Z} and {χKt ; t ∈ Z}
by χK+1

i := χi ∧ (K + 1) ∀i ∈ Z and χKi := χi ∧ K ∀i ∈ Z. Clearly, χK is a
stationary birth-death chain with a transition matrix pK given by

pKi,j :=



1, if i = 0 and j = 1;
β

β+(i∧m)δ , if 1 ≤ i ≤ K − 1 and j = i+ 1;
β

β+mδ , if i = j = K;
(i∧m)δ

β+(i∧m)δ , if 1 ≤ i ≤ K and j = i− 1;

0, otherwise.

Let {Ui; i ∈ Z} (where ... < U−1 < U0 ≤ 0 < U1 < ...) be the random times
{i ∈ Z;χKi ≤ χKi+1}. It holds that L(χKUi ; i ∈ Z|U0 = 0) = L(ω). The stationarity
follows from the stationarity of χK , and the fact that the Markov property holds
with transition matrix p can be shown using the fact that χK is a birth-death chain
with transition matrix pK . This embedding enables us to compute all the quantities
we need. First, let µK be the stationary distribution of χK . It follows from (2.1)
that the stationary distribution µ of ω is given by

µ(r) =
P (χK0 = r, χK1 = (r + 1) ∧K)

P (χK0 ≤ χK1 )
=

µK(r)pKr,(r+1)∧K∑K
j=0 µ

K(j)pKj,(j+1)∧K

=
( K∑
j=0

1
σj

(
β

δ
)j
)−1 1

σr
(
β

δ
)r ∀r ∈ {0, ...,K}.

Next, using the embedding of χK into χK+1 and the fact that χK+1 is “almost” a
birth-death chain, we get:

P (τ0(ω) < τK(ω)|ω0 = r) = P (τ0(χK+1) < τK+1(χK+1)|χK+1
0 = r + 1)

=
( K∑
j=0

σj(
δ

β
)j
)−1

K∑
i=r+1

σi(
δ

β
)i ∀r ∈ {0, ...,K − 1},

and

P (τ0(ω) < τK(ω)|ω0 = K) = P (τ0(ω) < τK(ω)|ω0 = K − 1)

=
( K∑
j=0

σi(
δ

β
)i
)−1

σK(
δ

β
)K = (

K∑
i=0

σi
σK

(
β

δ
)K−i)−1.
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This also implies:

P (τ̄K(ω) < τ̄0(ω)) = µ(K) +
K−1∑
r=1

µ(r)(
K∑
i=0

σi(
δ

β
)i)−1

r∑
j=0

σj(
δ

β
)j

= (
K∑
j=0

1
σj

(
β

δ
)j)−1

( 1
σK

(
β

δ
)K + (

K∑
i=0

σi(
δ

β
)i)−1

K−1∑
i=0

K−1∑
j=i∨1

σi
σj

(
β

δ
)j−i

)

= (
K∑
j=0

1
σj

(
β

δ
)j)−1 1

σK
(
β

δ
)K
(

1 + (
K∑
i=0

σi
σK

(
β

δ
)K−i)−1

K−2∑
i=0

K−1∑
j=i

σi
σj

(
β

δ
)j−i

)
.

It remains to calculate E(τ0(ω)|ω0 = K), E(τ0(ωR)|ω0 = K) and E(τ̄0(ω)). From
considerations of the sample paths of χK , and the embedding of χK into χK+1, we
get:

E(τ0(ω)|ω0 = r) =
1
2

(
E(τ0(χK)|χK0 = r + 1)− (r + 1)

−E(
τ0(χK+1)−1∑

i=1

I{χK+1
i = K + 1}|χK+1

0 = r + 1)
)

+E(
τ0(χK+1)−1∑

i=1

I{χK+1
i = K + 1}|χK+1

0 = r + 1) + 1 ∀r ∈ {0, ...,K − 1}.

(2.3) implies that

E(τ0(χK)|χK0 = r + 1) =
r∑
i=0

K∑
j=i+1

β + (j ∧m)δ
δ

σi
σj

(
β

δ
)j−i−1

=
r∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i +

r∑
i=0

K−1∑
j=i

σi
σj

(
β

δ
)j−i

= 2
r∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + r + 1−

r∑
i=0

σi
σK

(
β

δ
)K−i,

while the strong Markov property for χK+1 together with (2.2) implies that

E(
τ0(χK+1)−1∑

i=1

I{χK+1
i = K + 1}|χK+1

0 = r + 1)

=
P (τK+1(χK+1) < τ0(χK+1)|χK+1

0 = r + 1)
P (τ0(χK+1) < τK+1(χK+1)|χK+1

0 = K + 1)

=
β +mδ

mδ

P (τK+1(χK+1) < τ0(χK+1)|χK+1
0 = r + 1)

P (τ0(χK+1) < τK+1(χK+1)|χK+1
0 = K − 1)

=
β +mδ

mδ

1
σK−1

(
β

δ
)K−1(1 +

mδ

β
)−1

r∑
j=0

σj(
δ

β
)j =

r∑
i=0

σi
σK

(
β

δ
)K−i.
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Summing up, we get:

E(τ0(ω)|ω0 = r) =
r∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 1 ∀r ∈ {0, ...,K − 1};

E(τ0(ω)|ω0 = K) = E(τ0(ω)|ω0 = K − 1) =
K−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + 1.

This also implies:

E(τ̄0(ω)) =
( K∑
j=0

1
σj

(
β

δ
)j
)−1
(K−1∑
r=1

1
σr

(
β

δ
)r

r∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i

+
1
σK

(
β

δ
)K

K−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i +

K∑
j=1

1
σj

(
β

δ
)j
)
.

Finally, from considerations of the sample paths of χK , the reversibility of χK , and
the embedding of χK into χK+1, we get:

E(τ0(ωR)|ω0 = r) =
1
2

(
E(τ0(χK)|χK0 = r)− r

−E(
τ0(χK+1)−1∑

i=1

I{χK+1
i = K + 1}|χK+1

0 = r)
)

+E(
τ0(χK+1)−1∑

i=1

I{χK+1
i = K + 1}|χK+1

0 = r) + r ∀r ∈ {1, ...,K},

and combining this with the previous results gives

E(τ0(ωR)|ω0 = r) =
r−1∑
i=0

K∑
j=i+1

σi
σj

(
β

δ
)j−i + r ∀r ∈ {1, ...,K}.

Example 4.1. Let Ψn be the number of lost customers among n successively ar-
riving customers in a stationary M/M/1/K queueing system with arrival intensity
β and service intensity δ, and let ρ = β/δ < 1. Then,

dTV (L(Ψn),POIS(λνθ)) ≤ H(λ, θ)3n
(1− ρ)2

(1− ρK+1)2
ρ2K

×
(
K + 1 +

2ρ
1− ρ

(K − ρ(1− ρK)
1− ρ

) +
2ρK+1

1− ρK+1
(K − ρ(1− ρK)

1− ρ
)

+
2ρ2(2− ρ− ρK + ρK+1 − ρ2K − 2K(1− ρ)ρK−1)

(1− ρ)2(1− ρK+1)
+

2ρ(1− ρK)
1− ρK+1

)

+
2(1− ρ)ρK

1− ρK+1

(
1 +

1
1− ρK+1

(K − 1− ρ2(1− ρK−1)
1− ρ

)
)
,
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where

λ = n
(1− ρ)2

(1− ρK+1)2
ρK ; θ =

1− ρ
1− ρK+1

.

In particular, if ρ < 1 is constant and n := n(K) is chosen so that

lim
K→∞

E(Ψn) = lim
K→∞

n
1− ρ

1− ρK+1
ρK = c > 0,

then, as K → ∞, dTV (L(Ψn),POIS(λνθ)) = O(KρK), and POIS(λνθ) converges
weakly to POIS(c(1− ρ)ν(1−ρ)).

Example 4.2. Let Ψn be the number of lost customers among n successively ar-
riving customers in a stationary M/M/K/K queueing system with arrival intensity
β and service intensity δ. If ρ = β/δ is constant and n := n(K) is chosen so that

lim
K→∞

E(Ψn) = lim
K→∞

n(
K∑
j=0

1
j!
ρj)−1 1

K!
ρK = c > 0,

then, as K → ∞, dTV (L(Ψn),POIS(λνθ)) = O( KK!ρ
K), and POIS(λνθ) converges

weakly to Po(c). This follows in the same way as in Example 3.2, using also the
following facts:

K−2∑
i=0

K−1∑
j=i

i!
j!
ρj−i = K − 1 +

K−2∑
i=0

K−1∑
j=i+1

i!
j!
ρj−i;

K−1∑
r=1

1
r!
ρr

r∑
i=0

K∑
j=i+1

i!
j!
ρj−i =

K−1∑
r=1

1
r!
ρr

K∑
j=1

(j−1)∧r∑
i=0

i!
j!
ρj−i

=
K−1∑
r=1

1
r!
ρr

r∑
j=1

j−1∑
i=0

i!
j!
ρj−i +

K∑
j=2

1
j!
ρj

j−1∑
r=1

r∑
i=0

i!
r!
ρr−i <∞.

5. Numerical calculations

In the final section we have numerically evaluated the total variation distance
bounds given in Theorems 3.1 and 4.2, for some typical values of the parameters β,
δ, m, K and t (or n). The corresponding values of λ/t and θ have been computed
as well. For the bound given in Theorem 3.1, the values can be found in Table 5.1
(where β = 1, δ = 4 and m = 1) and Table 5.2 (where β = 1, δ = 0.5 and m = K).
For the bound given in Theorem 4.2 the values can be found in Table 5.3 (β = 1,
δ = 4 and m = 1) and Table 5.4 (β = 1, δ = 0.5 and m = K).
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t
K λ/t θ 102 104 106 108

4 0.002202 0.7507 0.02391 0.5095 > 1 > 1
6 1.373 · 10−4 0.7500 9.765 · 10−4 0.007947 0.06432 0.1272
8 8.583 · 10−6 0.7500 7.730 · 10−5 1.097 · 10−4 0.002050 0.006657
10 5.364 · 10−7 0.7500 6.084 · 10−6 6.231 · 10−6 2.092 · 10−5 2.795 · 10−4

Table 5.1. The bound given in Theorem 3.1 (β = 1, δ = 4, m = 1).

t
K λ/t θ 102 104 106 108

6 0.007062 0.5844 0.02218 0.6808 > 1 > 1
8 6.263 · 10−4 0.7287 3.797 · 10−4 0.007214 0.02728 0.04787
10 3.029 · 10−5 0.7930 1.250 · 10−5 3.124 · 10−5 4.637 · 10−4 0.001081
12 9.605 · 10−7 0.8300 3.694 · 10−7 3.870 · 10−7 2.143 · 10−6 8.861 · 10−6

Table 5.2. The bound given in Theorem 3.1 (β = 1, δ = 0.5, m = K).

n
K λ/n θ 102 104 106 108

4 0.002202 0.7507 0.05772 0.7712 > 1 > 1
6 1.373 · 10−4 0.7500 0.003685 0.01530 0.1093 0.2140
8 8.583 · 10−6 0.7500 3.049 · 10−4 3.633 · 10−4 0.003856 0.01215
10 5.364 · 10−7 0.7500 2.411 · 10−5 2.439 · 10−5 5.224 · 10−5 5.426 · 10−4

Table 5.3. The bound given in Theorem 4.2 (β = 1, δ = 4, m = 1).

n
K λ/n θ 102 104 106 108

8 6.263 · 10−4 0.7287 0.05770 0.9033 > 1 > 1
10 3.029 · 10−5 0.7930 0.002172 0.004567 0.05980 0.1386
12 9.605 · 10−7 0.8300 6.927 · 10−5 7.158 · 10−5 3.029 · 10−4 0.001188
14 2.175 · 10−8 0.8552 1.621 · 10−6 1.622 · 10−6 1.739 · 10−6 1.200 · 10−5

Table 5.4. The bound given in Theorem 4.2 (β = 1, δ = 0.5, m = K).

Current address: Department of Mathematics, KTH, S-100 44 Stockholm, Sweden
E-mail address: ter@math.kth.se


