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This essay is based on two papers by Benoît and Krishna [1, 2].

Introduction

In in�nitely repeated games, there often exist subgame perfect equilibria in which
the players' actions are not Nash equilibria of the stage game in all periods, since
actions that are pro�table in the short term might not coincide with the actions that
are pro�table in the long term. A player who takes an action that is pro�table in
the short term�and that reduces other players' payo�s�may be punished in the
in�nitely many following periods. If the players do not discount the future, each
individually rational payo� vector of the stage game can be approximated by the
payo� of an equilibrium of the repeated game.

However, games that are repeated a �nite number of times do not always have
more equilibria than the stage game. For example, a game with a unique Nash equi-
librium has a unique subgame perfect equilibrium�playing the Nash equilibrium in
all periods. This is seen by backwards induction: since each subgame must be played
in an equilibrium, the last period must be played in the unique Nash equilibrium
of the stage game, which implies that there is no credible threat in the penultimate
period, whence also that period must be played in the Nash equilibrium, and so on.
An example of such a game is the prisoner's dilemma.

Due to the backwards induction, some �nitely repeated games are trivial, which
is unsatisfactory since repeated games in reality typically are �nite. It would be
desirable that the ini�tely repeated games be the limits of �nitely repeated games
as the number of repetitions goes to in�nity. This would motivate the use of the
former as approximations of the latter.

Nevertheless, a �nitely repeated game for which the stage game has multiple
Nash equilibria has multiple subgame perfect equilibria, which are not necessarily
sequences of Nash equilibria of the stage game. Threatening to play a worse Nash
equilibrium in the last period is a credible threat, which enables other outcome
paths to be subgame perfect. However, it is not always possible to approximate
every possible individually rational payo� vector by a subgame perfect equilibria,
even if the game is repeated a large number of times. Benoît and Krishna states
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conditions under which the behavior of the �nitely repeated games are similar to
that of in�nitely repeated games as the number of repetitions is large, i.e., conditions
that enables approximation of every possible individually rational payo� vector by
a subgame perfect equilibrium of the �nitely repeated game.

Finitely repeated games

The set of subgame perfect equilibria can be characterized by the optimal punish-
ments. An optimal punishment for player i is the subgame perfect outcome path
that results in the worst payo� for player i. Before optimal punishments are formally
de�ned, some notation must be introduced.

Consider an n player one-shot game G = (A1, ..., An;U1, ..., Un), where Ai is the
strategy space for player i and Ui : A → R is the payo� function of player i, where
A = A1× ...×An. An a ∈ A is referred to as an outcome of G. Let G(T ) denote the
game that results when G is repeated T times. A strategy for player i in the game
G(T ) is a function σi which selects, for any history of play, an element of Ai. An
n-tuple of strategies is denoted by σ and de�nes an outcome path (a1(σ), ..., aT (σ)),
in which at(σ) denotes the outcome of the game G(T ) in period t as a function
of the strategy n-tuple σ. Let P (T ) denote the set of perfect equilibrium outcome
paths, i.e., outcome paths that result from some perfect equilibrium strategy of G(T ).
Optimal punishments can now be de�ned:

De�nition 1 The optimal K-period punishment for player i is any path in P (K)
that results in a payo� of wi(K) for player i, where wi(K) is player i's worst perfect

equilibrium payo�, given by

wi(K) = min

{
K∑

t=1

Ui(at) : (a1, ..., aK) ∈ P (K)

}
.

By considering these punishments for all players and all subgames, the set of subgame
perfect equilibria can be completely characterized: an outcome path (a1, ..., aT ) is an
element of P (T ) if and only if, for all players and for all t < T , the payo� resulting
from at is at least as good as the payo� obtained by deviating from at and being
optimally punished for the remainder of the game. It should be noted that a player
i that is subject to an optimal punishment can come o� worse than would be the
result of playing all remaining periods in the Nash equilibrium of G that is worst for
player i.

Optimal punishments are problematic in the sense that they are hard to deter-
mine. Therefore, Benoît and Krishna utilize three phase punishments to approximate
optimal punishments. A three phase punishment is, as the name suggests, con-
structed by three phases: In the �rst phase, the player i to be penalized is severely
punished. In this phase, the other players take their minmax actions against player
i, which means that they take the actions aj ∈ Aj such that

aj ∈ argmin
aj∈Aj

(
max
ai∈Ai

Ui(a)
)
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for the extension of the phase. In the second phase, the players that participated in
the punishment are compensated; it may be so costly for players j 6= i to participate
in the punishment that they might want to deviate, but the reward in the second
phase is used to motivate the players to punish player i in the �rst phase. Care
is taken so that the punished player does not recoup. In the third phase, a Nash
equilibrium of the G is played long enough as to ensure compliance during the reward
phase.

Three phase punishments are easier to determine than optimal punishments, and
can under mild conditions approximate optimal punishments when the number of
repetitions is large. Given an arbitrary n-tuple of punishments, it is then possible to
construct a three phase punishment for a player that is more severe than the original
punishment. This is utilized to construct a hierarchy of three phase punishments that
converge to optimal punishments when the number of repetitions approaches in�nity.
Three phase punishments can then be used in the proof of a limit folk theorem for
�nitely repeated games. The theorem states that when certain weak conditions
are satis�ed, every possible individually rational outcome vector in the stage game
can be approximated by the mean payo� of a subgame perfect equilibrium of the
�nitely repeated game, if only the game is repeated a su�cient number of times.
The conditions that must be satis�ed are that there for each player must exist a
Nash equilibrium in the stage game in which the player's payo� is strictly better
than in the worst Nash equilibrium of the player, and that F , the feasible region of
the payo� vectors�the convex hull of the set of payo� vectors that can result from
the choices of the players�has dimension n. The dimensionality condition can be
dispensed with in games of two players. Formally, the theorem goes as follows:

Theorem 1 Suppose that (i) for every j, there exists a Nash equilibrium of G such

that player j's payo� is strictly better than wj(1), the worst one-shot equilibrium

payo� for player j; and (ii) the dimension of the feasible region F of payo� vectors

is n.
Let u be any feasible and individually rational payo� vector. Then for all ε > 0

there exists a T0 such that for all T ≥ T0 there exists an outcome path (a1, ..., aT ) ∈ P (T )
such that ∥∥∥∥∥ 1

T

T∑
t=1

U(at)− u

∥∥∥∥∥ < ε.

Renegotiation in �nitely repeated games

The result that all possible individually rational payo� vectors can be approximated
in many games can be criticized, since some of the outcomes are enforced by threats
that are Pareto dominated by other subgame perfect outcome paths. If the play-
ers were able to negotiate between periods, they would therefore possibly choose a
dominating path, since all players would bene�t from doing so. This critique implies
that some equilibria are not probable to occur, since the enforcing threats can be
considered as not being credible. Therefore, Benoît and Krishna extends the theory
by allowing renegotiation between games and consider the equilibria that are not
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enforced by Pareto dominated threats. These equilibria are not the same as the
Pareto e�cient subgame perfect equilibria.

Players are assumed to be able to communicate with each other before each
period, but they cannot form binding agreements. The subset of subgame perfect
equilibria that is considered is called �renegotiation proof� and is constructed recur-
sively. In a one-shot game, the set of acceptable equilibria are the ones that are
not Pareto dominated by any other equilibria. In G(2), the second period must be
played in an e�cient one-shot equilibrium. In the �rst period, only outcomes that
are sustained by threats of e�cient one-shot equilibria are considered, and only the
e�cient ones of these are played. The de�nition for G(T ) for arbitrary T can be
constructed by continuing in this manner.

Formally, for any set S ⊂ R2, let E� S = {x ∈ S : ¬∃y ∈ S : y � x} where for
x, y ∈ R2, x � y denotes that for i = 1, 2, xi > yi. Let U(σ) =

∑T
t=1 U(at(σ)). For

K < T , let h(K) = (a1, ..., aK) denote the K-period history and let σ|h(K) denote the
strategy combination induced by σ on the subgame G(T −K) following h(K). Then
U(σ|h(K)) is called the continuation payo� prescribed by σ on G(T −K) following

h(K). Finally, let P̃ (T ) = {U(σ) : σ is a perfect equilibrium of G(T )} (notice that
P̃ (T ) is not the same as P (T ) the previous paper). The renegotiation proof equilibria
of G(T ) can then be de�ned as follows:

De�nition 2 A perfect equilibrium σ of G(T ) is said to be renegotiation proof if
U(σ) ∈ R(T ), where the set R(T ) of renegotiation proof equilibria payo�s is de�ned

by

Q(1) = P̃ (1),
R(1) = E� Q(1),

and for T > 1,

Q(T ) = {U(σ) ∈ P̃ (T ) : all continuation payo�s prescribed by

σ on G(T − 1) lie in R(T − 1)},
R(T ) = E� Q(T ).

Benoît and Krishna then studies the set of renegotiation proof equilibria as the
number of repetitions of the game approaches in�nity. They show that when this set
exists�which is an open question but which they conjecture�it either is a singleton
set or a connected subset of the Pareto frontier. Surprisingly, when the set is a
singleton, it does not necessarily lie on the Pareto frontier, which implies that it
corresponds to an ine�cient renegotiation proof equilibrium. The theorem is stated
as follows:

Theorem 2 The set

lim
T→∞

(1/T )R(T )

is a singleton, or it is a subset of E� F .
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Conclusion

Benoît and Krishna have given conditions under which �nitely repeated games ap-
proach their in�nitely repeated counterparts as the number of repetitions approaches
in�nity. This motivates the study of in�nitely repeated games as an approximate
model of reality, in which games typically are �nite. It also implies that �nitely
repeated games generally are non-trivial, and motivates a further study of these
games.

They have also shown how a subset of the set of subgame perfect equilibria, called
the set of renegotiation proof equilibria, in which only threats with a certain measure
of e�ciency are considered credible, behaves as the number of repetitions of certain
games approaches in�nity. In the limit, the set of mean payo�s corresponding to
these renegotiation proof equilibria can sometimes be reached by ine�cient paths.
If it can, it is a singleton set.
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