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1 Introduction

This is an essay which aims to capture the most relevant aspects of the paper “Potential
Games” by Dov Monderer and Lloyd S. Shapley. In this article Monderer and Shapley
introduces potential games, games which admit a potential function. The potential function
is a real valued function on the strategy space which match a deviation to a change of
the potential value. The matching can be exact (exact potential games) or by sign (ordinal
potential games). Nash equilibria are local maximizers of the potential function, and since
deviations giving higher payoff increase the potential, best-reply dynamics converge to the
Nash equilibrium.

2 Potential Games

In order to proceed to more interesting results a few definitions and basic results are neces-
sary. The concepts of ordinal and weighted potential games are first introduced. Consider
a game Γ(u1, u2, . . . , un) in strategic form with finite number of players, N = {1, 2, . . . , n}.
Let the strategy space of player i be given by Y i and let Y = Y 1×Y 2×· · ·×Y n. The payoff
function of player i is given by ui : Y → R. A function P : Y → R is an ordinal potential
function if for every user i and any y−i ∈ Y

ui(y−i, xi) − ui(y−i, zi) > 0, iff P (y−i, xi) − P (y−i, zi) > 0

for every xi, zi ∈ Y i. A game Γ is called an ordinal potential game if it has an ordinal
potential function. Similarly ω-potential games are defined using weights ωi, i ∈ N by the
relation

ui(y−i, xi) − ui(y−i, zi) = ωi[P (y−i, xi) − P (y−i, zi)]

for every xi, zi ∈ Y i. If there is a function P such that the relation is fulfilled with ωi = 1, ∀i

the game is called an (exact) potential game and the function P is called an (exact) potential
function. Note that a difference between ordinal and exact potential games is that for ordinal
potential games only the sign of the differences matters, whereas the differences are equal
for exact potential games.

A basic result of ordinal potential games is that the set of equilibrium points of Γ(u1, u2, . . . , un)
is equal to the equilibrium set of Γ(P, P, . . . , P ). Hence y ∈ Y is an equilibrium point of Γ
iff for every i ∈ N

P (y) ≥ P (y−i, x), ∀x ∈ Y i.

Furthermore every finite ordinal game possesses a pure-strategy equilibrium.
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Consider the following game

G =

(

(1, 1) (9, 0)
(0, 9) (6, 6)

)

.

From the definition of potential we can verify that the following is a potential function of G

P =

(

4 3
3 0

)

,

and hence G is a potential game.
A useful concept for the characterization of potential games is the notion of a path. A

path is defined as a sequence of actions, γ = {γ0, γ1, . . . }, such that for every γk, k ≥ 1
a unique player makes a change in its action. An improvement path is a path where the
unique player changing its action obtains a strictly higher payoff, ui(yk) > ui(yk−1). A game
has the finite improvement property (FIP) if every improvement path is finite. Every finite
ordinal game has this property. For games with the FIP it holds that also the maximal
improvement path (best response) ends up in the equilibrium and there is convergence for
these dynamics.

For exact potential games the following result is presented. Let P1 and P2 be two potential
functions for the game Γ. Then there exists a constant c s.t. P1(y) − P2(y) = c for every
y ∈ Y . This implies that the potential function of a game is unique up to an additive
constant, which implies that for determining the equilibrium set it does not matter which
potential function is used.

In the following potential games are related to the potential concept in physics. For a
finite path γ and a vector of functions v = (v1, v2, . . . , vn) define

I(γ, v) =

n
∑

k=1

[vik(yk) − vik(yk−1)],

where ik is the unique player deviating at step k. Hence we sum over the differences of the
function values of the current and previous action for the unique deviating player, over a
path. A path is called closed if it begins and ends in the same point (γ0 = γn), and it is
called a simple closed path if in addition the intermediate steps are not equal to eachother.
The following useful theorem shows the similarities to the physical concept.

Let Γ be a game in strategic form. Then the following statements are equivalent.

• Γ is a potential game.

• I(γ, u) = 0 for every finite closed path γ.

• I(γ, u) = 0 for every finite simple closed path γ.

• I(γ, u) = 0 for every finite simple closed path γ of length 4.

This theorem can be used to determine whether a game is a potential game or not. It relates
to psysics in that for a potential field any way between two points give the same change in
potential.

3 Extensions

Now consider infinite games. A game Γ is a continuous game if the strategy sets are topologi-
cal spaces and the payoff functions are continuous w.r.t. the product spaces. The continuity
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of the payoff function implies continuity of the potential function. For a continuous potential
game with compact strategy sets it holds that it has a pure-strategy equilibrium point. If
the payoff functions are continuously differentiable functionals, P is a potential function of
the game iff P is continuously differentiable and the following relation holds

∂ui

∂yi
=

∂P

∂yi
, ∀i ∈ N.

Furthermore, if the payoff functions are twice continuously differentaible it holds that the
game is a potential game iff

∂2ui

∂yi∂yj
=

∂2uj

∂yi∂yj
, ∀i, j ∈ N.

A potential is then given by

P (y) =

n
∑

i=1

∫ 1

0

∂ui

∂yi
(x(t))(xi)′(t)dt

where x : [0 1] → Y is a piecewise continuously differentiable path in Y.

4 Congestion games

An important class of games is the class of congestion games. It has important applications
in networks since it has players whose payoffs, or costs, depend on the congenstion, that
is how many other players it shares resourses with. In the article it is shown that every
congeston game is a potential game and every potential game is isomorphic to a congestion
game.

5 Example

Consider a Cournot competition with cost functions ci(q) = cqi, ∀i and a positive inverse
demand function F (Q), where Q =

∑n

i=1
qi > 0. Let the profit of player i be defined as

Πi(q1, . . . , qn) = F (Q)qi − cqi.

Now define the function P by

P (q1, . . . , qn) = q1q2 . . . qn(F (Q) − c).

Then it holds that for every player i and q−i

Πi(qi, q−i) − Πi(xi, q−i) > 0 iff P (qi, q−i) − P (xi, q−i) > 0,

for all qi, xi ∈ R++. Hence P is an ordinal potential and the game is an ordinal potential
game.
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