KTH Engineering Sciences

Harald Lang

Typographical errors in Bruce Hansen's course notes.

p. 20 Exercise 3: $P\left(y_{i}=k \mid \ldots\right)$ should be $P\left(y_{i}=j \mid \ldots\right)$
p. 25 The numerator in the formula at the top should be $\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$.
p. 42 Markov's inequality: What has the function g got to do with anything? For any random variable $Y \geq 0$ it holds that $P(Y>\alpha) \leq \alpha^{-1} \mathrm{E}[Y], \alpha>0$.
p.44. Bottom of page: \log should be \ln
p. 45 The line after the formula in the Proof should start "where $\theta_{n j}^{*}$ lies ...". (Furthermore, the proof has holes.)
p. 68 The formula on the middle of the page should be

$$
W_{n}=n\left(\frac{\tilde{\sigma}^{2}}{\hat{\sigma}^{2}}-1\right)=528
$$

p. 69 The minus sign in the expression for h_{θ} is wrong; $h_{\theta}=\binom{1}{2 \theta}$
p. 90 For the question to make sense β_{i} should be replaced by a_{i} for $i=1, \ldots, 5$ in (7.18)
p. 108 The formula at the top lacks a square root sign: the second parenthesis should be $\left(\frac{1}{\sqrt{n}} X^{\prime} e\right)$
p. 108 Somewhat below the middle of the page: G in the expression $\left(G^{\prime} \Omega^{-1} G\right)^{-1}$ is not defined. (It is defined later on p.110.)
p. 108 Close to the bottom at the very right on the line: what does w_{i} stand for in the expression $g\left(w_{i}, \hat{\beta}\right)$?
p. 109 Middle of the page: "There is little point in using an inefficient GMM estimator as it is easy to compute." It sounds very strange to me that we should avoid using a method merely because it is easy. I suppose he means "... as it is easy to compute an efficient estimate."
p. 110 The first formula of section 9.6: I don't understand what w_{i} stands for.
p. 114 Exercise 4: this is not an error, but the suggested proof seems to me unnatural. Here is how I would do it: Define $A=W Q\left(Q^{\prime} W Q\right)^{-1}$ and $B=$ $\Omega^{-1} Q\left(Q^{\prime} \Omega^{-1} Q\right)^{-1}$ and $R=A-B$. Note that $Q^{\prime} R=Q^{\prime} A-Q^{\prime} B=I-I=0$. It follows that $B^{\prime} \Omega R=0$ (and hence that $R^{\prime} \Omega B=0$.)

Now $V=A^{\prime} \Omega A=\left(B^{\prime}+R^{\prime}\right) \Omega(B+R)=B^{\prime} \Omega B+R^{\prime} \Omega R \geq B^{\prime} \Omega B=V_{0}$, Q.E.D.
p. 115 There is a prime missing in formula (9.5): the last part of it should read $X^{\prime}(y-X \beta)$ Furthermore, in part (b) there is a " $=0$ " missing under the "argmin".

