EXAMINATION IN SF2975 FINANCIAL DERIVATIVES

Date: 2015-03-17, 08:00-13:00

Lecturer: Fredrik Armerin, tel. 070-251 75 55, email: armerin@math.kth.se

Allowed technical aids: None.

Any notation must be explained and defined. Arguments and computations must be detailed so that they are easy to follow. Write only on one side of the page.

Good luck!

Problem 1

(a) Solve the PDE

$$\frac{\partial F}{\partial t} + \frac{b^2 x^2}{2} \frac{\partial^2 F}{\partial x^2} + aF = 0$$
$$F(T, x) = x$$

on [0,T] where $a, b \in \mathbb{R}$ are constants.

(b) Let W be a Wiener process and fix T > 0. Determine the distribution of the random variable

$$X = \int_0^T u^2 dW(u).$$
 (3 p)

(c) State and prove the put-call parity when there is a bank account with constant rate $r \ge 0$ and the stock pays the constant dividend yield $\delta > 0$.

(4 p)

(3 p)

Problem 2

Consider the standard Black-Scholes model with bank account dynamics

$$dB(t) = rB(t)dt$$
 with $B(0) = 1$,

and stock price dynamics

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t) \text{ with } S(0) > 0,$$

where $r \geq 0$, $\alpha \in \mathbb{R}$ and $\sigma > 0$.

(a) Determine the arbitrage free price $\Pi(t; X)$ at time $t \in [0, T]$ of the T-claim

$$X = \left[\ln S(T)\right]^2$$

(5 p)

(b) Determine the hedging portfolio of the claim in (a). (5 p)

Problem 3

(a) Consider the following model for the forward rates under the objective measure P:

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)dW(t)$$

$$f(0,T) = f^*(0,T).$$

Here W is a 1-dimensional Wiener process under P and the volatility function is given by

$$\sigma(t,T) = \frac{\sigma_0}{1 + a(T-t)},$$

where $\sigma_0, a > 0$. We assume that the market model is free of arbitrage. Determine the dynamics of the forward rates f(t, T) and the dynamics of the bond prices p(t, T) for $0 \le t \le T < \infty$ under the martingale measure Q. (7 p)

(b) Let T_0, T_1, \ldots, T_N be the resettlement times for an interest rate swap contract. Show that the swap rate at $t \in [0, T_0)$ is given by

$$\frac{p(t,T_0) - p(t,T_N)}{\sum_{k=1}^{N} (T_k - T_{k-1})p(t,T_k)}.$$
(3 p)

Problem 4

Consider the following model for the short rate:

$$dr(t) = \sigma_0 dW^Q(t).$$

Here $\sigma_0 > 0$ is a given constant volatility and W^Q a 1-dimensional Q-Wiener process.

- (a) Calculate for every $0 \le t \le T < \infty$ the forward rates f(t, T). (7 p)
- (b) In order to be able to calculate the objective probability of r(T) being negative, a constant market price of risk λ_0 is assumed. Calculate the probability P(r(T) < 0) under this assumption. (3 p)

Problem 5

Consider a model with a domestic bank account having dynamics

$$dB_d(t) = r_d B_d(t) dt \text{ with } B(0) = 1,$$

and a foreign stock (denoted in the foreign currency) with price process

 $dS_f(t) = \alpha_f S_f(t) dt + \sigma_f S_f(t) dW(t) \text{ with } S_f(0) > 0.$

The exchange rate is assumed to satisfy

$$dX(t) = \alpha_X X(t) dt + \sigma_X X(t) dW(t) \text{ with } X(0) > 0.$$

We assume that $r \geq 0$, $\alpha_f, \alpha_X \in \mathbb{R}$ and $\sigma_f, \sigma_X > 0$.

- (a) Determine the dynamics of X under the equivalent martingale measure when the domestic bank account is the numeraire. (5 p)
- (b) Determine for $t \in [0,T]$ the arbitrage free price $\Pi(t;Z)$ of the T-claim with payoff

$$Z = S_f(T)X(T).$$
(5 p)