EXAMINATION IN SF2975 FINANCIAL DERIVATIVES

Date: 2015-06-11, 14:00-19:00

Lecturer: Fredrik Armerin, tel. 070-251 75 55, email: armerin@math.kth.se

Allowed technical aids: None.

Any notation must be explained and defined. Arguments and computations must be detailed so that they are easy to follow. Write only on one side of the page.

Good luck!

Problem 1

(a) Solve the PDE

$$\frac{\partial F}{\partial t} + a \frac{\partial F}{\partial x} + xF = 0$$
$$F(T, x) = 1$$

on [0,T] where $a \geq 0$ is a constant.

(3 p)

(b) Determine $E^Q[r(t)]$ for $t \ge 0$ when r solves

$$dr(t) = a(r(t) - b)dt + \sigma dW^{Q}(t),$$

where $a, \sigma > 0, b \in \mathbb{R}$ and W^Q is a one-dimensional Wiener process under Q. (3 p)

(c) Let Y be the arithmetic Brownian motion

$$dY(t) = \alpha dt + \sigma dW(t)$$
 with $Y(0) = y \in \mathbb{R}$,

where $\alpha, \sigma \in \mathbb{R}$. Determine for $0 \leq T_1 \leq T_2$

$$E[Y(T_1) \cdot Y(T_2)]$$

(4 p)

Problem 2

Consider the standard Black-Scholes model with bank account dynamics

$$dB(t) = rB(t)dt$$
 with $B(0) = 1$,

and stock price dynamics

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t)$$
 with $S(0) > 0$,

where $r \geq 0$, $\alpha \in \mathbb{R}$ and $\sigma > 0$ and the stock pays the constant dividend yield $\delta > 0$. Determine the arbitrage free price $\Pi(t; X)$ at time $t \in [0, T]$ of the T-claim

$$X = (S(T) + 1)^3$$
. (10 p)

Problem 3

Consider the following model for the forward rates under the objective measure P.

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)dW(t).$$

Here W is a two-dimensional Wiener process under P and the volatility function is given by

$$\sigma(t,T) = [\sigma_{11}e^{-a(T-t)} \quad \sigma_{21} + \sigma_{22}(T-t)],$$

where $\sigma_{11}, \sigma_{21}, \sigma_{22}, a > 0$. We assume that the market model is free of arbitrage. Determine the dynamics of f(t,T) for $0 \le t \le T < \infty$ under the martingale measure Q. (10 p)

Problem 4

Let Q^T denote the T-forward measure for T > 0.

- (a) Show that the LIBOR rate L(t; S, T) is a Q^T -martingale on [0, S]. (3 p)
- (b) Determine $E^{Q^T}[r(T)|\mathcal{F}_t]$ when r satisfies

$$dr(t) = adt + \sigma dW^{Q}(t).$$

where $a, \sigma > 0$ and W^Q is a Wiener process under the martingale measure where the bank account is the numeraire. (7 p)

Problem 5

Consider the model with bank account dynamics

$$dB(t) = rB(t)dt$$
 with $B(0) = 1$,

and stock price dynamics

$$dS_i(t) = \alpha_i S_i(t) dt + \sigma_i S_i(t) dW_i(t)$$
 with $S_i(0) = s_i > 0$, $i = 1, \dots, n$,

where $r \geq 0$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $\sigma_1, \ldots, \sigma_n > 0$ are constants, and $W = (W_1, \ldots, W_n)$ is an *n*-dimensional Wiener process. Determine the arbitrage free price at time $t \in [0, T]$ of the *T*-claim

$$X = \prod_{i=1}^{n} S_i(T)^{b_i},$$

(10 p)

where $b_i > 0$, i = 1, ..., n, are constants.