EXAMINATION IN SF2975 FINANCIAL DERIVATIVES

Date: 2015-10-23, 14:00-19:00

Lecturer: Fredrik Armerin, tel. 070-251 75 55, email: armerin@math.kth.se

Allowed technical aids: None.

Any notation must be explained and defined. Arguments and computations must be detailed so that they are easy to follow. Write only on one side of the page.

Good luck!

Problem 1

(a) A stock has dynamics

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t)$$

between its dividend payments. Here W is a one-dimensional Wiener process, $\alpha \in \mathbb{R}$, $\sigma > 0$ and S(0) > 0. There is a dividend payment of

 $\delta \cdot S(T_1-)$

at time $T_1 > 0$, where $\delta \in (0, 1)$. Calculate E[S(T)] for $T > T_1$. (5 p)

(b) Let W be a one-dimensional Wiener process. Determine the distribution of $X(T)|\mathcal{F}_t^W$ for $0 \le t \le T$ when X has dynamics

$$dX(t) = (a+bt)^2 \, dW(t)$$

and where a, b > 0.

- (3 p)
- (c) Show that the price of a ZCB in a model which has an ATS is convex as a function of the short rate. (2 p)

Problem 2

Consider the standard Black-Scholes model with bank account dynamics

$$dB(t) = rB(t)dt$$
 with $B(0) = 1$,

and stock price dynamics

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t) \text{ with } S(0) > 0,$$

where $r, \alpha \in \mathbb{R}$ and $\sigma > 0$.

Determine the arbitrage free price $\Pi(t;X)$ at time $t\in[0,T_0]$ of the T-claim

$$X = \int_{T_0}^T (S(u) - S(T_0)) du,$$

where $T_0 < T$.

Problem 3

Consider the short rate model

$$dr(t) = adt + \sigma\sqrt{t}dW^Q(t),$$

where $a \in \mathbb{R}, \sigma > 0$ and W^Q is a one-dimensional Q-Wiener process.

(a) Calculate for every $0 \le t \le T$ the LIBOR spot rates L(t,T) in this model.

(5 p)

(b) Determine the arbitrage free price of the T-claim

$$X = r(T)^2.$$

(5 p)

Problem 4

Consider the model with bank account dynamics

$$dB(t) = rB(t)dt$$
 with $B(0) = 1$

and stock price dynamics

$$dS_1(t) = \alpha_1 S_1(t) dt + S_1(t) [\sigma_{11} dW_1(t) + \sigma_{12} dW_2(t)] dS_2(t) = \alpha_2 S_2(t) dt + S_2(t) [\sigma_{21} dW_1(t) + \sigma_{22} dW_2(t)],$$

where $S_1(0), S_2(0) > 0, r, \alpha_1, \alpha_2 \in \mathbb{R}$ and $\sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22} > 0$. Finally $W = (W_1, W_2)$ is a two-dimensional Wiener process.

(a) Determine the arbitrage free price $\Pi(t; X)$ at time $t \in [0, T]$ of the T-claim

$$X = \ln S_1(T) + \ln S_2(T).$$

(5 p)

(b) Determine the hedging portfolio for the claim in (a). (5 p)

(10 p)

Problem 5

Consider a model with stock price dynamics

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t) \text{ with } S(0) > 0,$$

where $\alpha \in \mathbb{R}, \sigma > 0$ and W is a one-dimensional Wiener process. To model a stochastic short rate, the model

$$dr(t) = (b - ar(t))dt + c \, dW(t)$$

is used. Here a, b, c > 0, W is the same Wiener process as in the model of S and the bank account has dynamics

$$dB(t) = r(t)B(t)dt$$
 with $B(0) = 1$.

We further assume that $\sigma > 1/a$.

- (a) Determine the dynamics of S and r under the EMM Q where the bank account is the numeraire. (3 p)
- (b) Fix T > 0 and let Q^T denote the *T*-forward measure. Determine the dynamics of *S* and *r* under Q^T . (7 p)