
Homeworks – Portfolio Theory SF2976

Fall 2011

See the last page for more information.

1 Portfolio Resampling and Utility Maximiza-
tion

1.1 Portfolio Resampling

This part will illustrate the use of resampling methods in Markowitz portfolio
optimization. We will consider the problem of maximizing quadratic utility
given the risk-aversion λ:

max wTµ− λ

2
wTΣw

s.t. wT1 = 1

wi ≥ 0.

As usual, w = (w1, . . . , wn)T denotes a portfolio of n assets.

Estimate the mean and the covariance matrix of the series of log-returns re-
trieved from the course web page, µ̂0 and Σ̂0.
Choose a value N and generate N new series of data by bootstrapping from the
original series. Estimate the mean and the covariance matrix using these series,
µ̂i and Σ̂i, i = 1, . . . , N . Make histograms of estimates of some element of µ
and Σ.

Write a program that solves the above optimization problem. For each i, solve
the problem for 30 different values of λ, chosen so that the main part of the
efficient frontier is covered. Do the same using the original estimates µ̂0 and
Σ̂0.
Make a plot of the portfolios in a σ − µ diagram, using the original estimates
µ̂0 and Σ̂0. The original efficient frontier should be visible. (The resampled
portfolios are preferably represented by e.g. dots or stars.)
Calculate the “resampled efficient frontier” by averaging over the resampled
portfolios for each λ. Compare with the original frontier in a σ − µ diagram.
Repeat the procedure for two additional values of N (one small and one large),
to illustrate the dependence of the resampled frontiers on N (you will have to
zoom in on some part of the frontier).
Comment on the above results.
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1.2 Utility Maximization

This part deals with the approach of maximizing the expected utility obtained
from investing in a portfolio. In general, the utility of an allocation will depend
on the level of wealth of the investor, i.e. money not invested will affect the
allocation. The utility will of course always depend on the invested amount,
but we will normalize the portfolios just as in the Markowitz approach. To
avoid the influence from initial wealth, we can work with the exponential utility
function, which ranks allocations independently of the wealth level.
The expected utility of a portfolio w = (w1, . . . , wn)T of the assets
r = (r1, . . . , rn)T is

EU(W0 − α+ α(1 + wTr)),

where α denotes the invested amount.
Show that the exponential utility function

U(x) = −e−cx

ranks allocations independently of the initial wealth W0.
We will assume that the vector of asset returns r is normally distributed with
mean vector µ and covariance matrix Σ. We will also assume that the amount
invested is 1. Show that

E(−e−cw
Tr) = −e−c(w

Tµ− 1
2 cw

TΣw)

by using the explicit form of the probability density and completing the square in
the exponent. Identify the certainty equivalent of the allocation w and motivate
why the portfolio that maximizes the expected utility above is the one that
maximizes the certainty equivalent. Use this to find an explicit expression for
the normalized portfolio that maximizes the expected utility. Show that the
resulting portfolio can be written on the form

w∗ =
Σ−1

c
(µ− µMV P1) + wMV P . (1)

Comment on the relation between the above solution (1) and the solution to
the optimization problem in Section 1.1.
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2 Scenario Optimization

This part deals with alternatives to classical Markowitz portfolio optimization.
We will study three different methods: Mean Absolute Deviation, Minimum Re-
gret and Conditional Value-at-Risk. Their common characteristic is that they
can be formulated as linear programs using historical data or scenarios. (We
will only use historical data and not generate scenarios.)

For the rest of the homework, we let r = (r1, . . . , rn)T denote a vector of log-
returns and let r(t) denote an observation of this vector at time t. The sample
mean is denoted by

r =
1

T

T∑
t=1

r(t).

2.1 Mean Absolute Deviation

As the name suggests, Mean Absolute Deviation (MAD) studies the expected
absolute deviation of the portfolio return. This means that we use

E (|rportfolio − E(rportfolio)|)

as our measure of risk. We estimate this quantity by replacing the expectations
with arithmetic averages. To find an optimal portfolio w.r.t. this risk measure,
we solve the problem

min
w

1

T

T∑
t=1

|wT(r(t) − r)|

s.t. wTr ≥ rtarget

wT1 = 1

wi ≥ 0.

This is equivalent to the linear program

min
w,d1,...,dT

1

T

T∑
t=1

dt

s.t. dt − wT(r(t) − r) ≥ 0

dt + wT(r(t) − r) ≥ 0

wTr ≥ rtarget

wT1 = 1

wi ≥ 0,

for t = 1, . . . , T and i = 1, . . . , n.

2.2 Minimum Regret

Minimum Regret (MR) maximizes the minimum return for a set of return sce-
narios (historical data in our case). This can be accomplished by solving the
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following linear program.

max
w,Rmin

Rmin

s.t. wTr(t) −Rmin ≥ 0

wTr ≥ rtarget

wT1 = 1

wi ≥ 0,

for t = 1, . . . , T and i = 1, . . . , n.

2.3 Conditional VaR

Conditional VaR (Expected Shortfall, Conditional Tail Expectation, Tail VaR
etc.) is the expected value of the 1 − α% worst outcomes of the portfolio.
Optimizing a portfolio w.r.t. CVaR with scenarios can be done using linear
programming. The CVaR(α)-optimal portfolios are found by solving

min
VaR,w,d1,...,dT

VaR +
1

T

1

1− α

T∑
t=1

dt

s.t. dt + VaR + wTr(t) ≥ 0

dt ≥ 0

wTr ≥ rtarget

wT1 = 1

wi ≥ 0,

for t = 1, . . . , T and i = 1, . . . , n.
Note that the program also calculates the α-VaR.

Write programs that solve the above problems, make plots of the different
possible portfolios and comment. Also, report the min-MAD, min-MR and
min-CVaR portfolios.

2.4 Real Data

Apply the methods above to some other data set of your choice. Write a short
description of the data and where it can be downloaded. Make plots and com-
pare the min-MAD, min-MR and min-CVaR portfolios.
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Information about the homeworks

1. Satisfactory reports handed in on time with solutions to both homeworks
will give 1.5 credits (LAB 1) as well as 10 points on Problem 1 on the first
exam. A satisfactory solution to one part will give 5 points on Problem
1.a. on the first exam. A correction is then needed to obtain the credits
(LAB 1). If none of the solutions are satisfactory, they must be corrected
to obtain the credits (LAB 1) and no points will be awarded on the exam.

2. The written reports must be handed in to Ali Hamdi before
15:00, November 15, 2011 (part 1) and 15.00, November 25,
2011 (part 2).

3. Data for the homeworks can be found on the course web page.

4. The homeworks may be done in groups of up to four students.

5. No late reports will be accepted.

6. No e-mailed reports will be accepted.

7. No questions regarding homeworks will be answered on the last day of
hand-in.

8. The report must be typeset (e.g. using LATEX or Word), structured and
well-written.

9. The report should include the following:

• an introduction with a short summary

• results with illustrating figures and tables

• clear and concise comments of the results and figures

• an appendix with programming code.

10. Each group must also send an e-mail to Ali Hamdi containing program-
ming code written in Matlab or R, that give results in agreement with the
results in the report.

Good Luck!
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