
LECTURE NOTES 71

Lecture 12

23. The Bootstrap

We start the discussion about the bootstrap with an example. Suppose X =
(X1, . . . , Xn) are IID unknown distribution function F . Let the empirical distribu-
tion based on X be

F̂n(x) =
1

n

n
∑

i=1

I{Xi ≤ x}.

We want to construct a symmetric confidence interval for some functional of the
distribution. We write it h(F ). For instance, if we are estimating the mean then

h(F ) =
∫

xF (dx). An estimate of h(F ) is h(F̂n) (in the case of the mean, this is
the empirical mean X̄n) and our objective is to find t such that

Pr(h(F̂n)− t ≤ h(F ) ≤ h(F̂n) + t) = γ.

Then I = [h(F̂n) − t, h(F̂n) + t] is a coefficient γ confidence interval for h(F ). We
can write the above as

Pr(−t ≤ h(F )− h(F̂n) ≤ t) ≥ γ.

If the distribution of h(F ) − h(F̂n) is known then we can find out what t is. For
instance, if X1, . . . , Xn are IID N(µ, 1) with µ unknown and h(F ) =

∫

xF (dx) = µ

then h(F ) − h(F̂n) = µ − n−1
∑n

i=1 Xi ∼ N(0, 1/n) and t should be taken as the
(1 + γ)/2-quantile of the N(0, 1/n)-distribution.

The problem occurs when the distribution of h(F ) − h(F̂n) is unknown or too
difficult to compute. Then the bootstrap methodology proposes to do the following.
For each i = 1, . . . , N ,

• LetX∗,i = (X∗

i1, . . . , X
∗

in) be an independent sample from the set {X1, . . . , Xn}
drawn uniformly with replacement. That is, X∗

i1, . . . , X
∗

in are IID with
Pr(X∗

ij = Xk) = 1/n. Let F ∗

i be the empirical distribution of X∗

i1, . . . , X
∗

in.

• Form Ri = h(F̂n)− h(F ∗

i ).
• Copmute the empirical (1+γ)/2-quantile from the histogram of R1, . . . , RN

and use this for t̂.
• Construct the confidence interval I = [h(F̂n)− t̂, h(F̂n) + t̂].

The idea is that the distribution of h(F )−h(F̂n) is unknown but we can approximate

it. We approximate F by F̂n and h(F ) − h(F̂n) by h(F̂n) − h(F ∗). We may not
know the distribution of the latter but in any case we can simulate from it and use
the simulated histogram to construct an ’approximate’ confidence interval. The
success of the procedure depends on to which extent the approximation of F by F̂n

is a good one. This can be hard to quantify.

The general setup. In general the bootstrap is set up as follow. We have
X = (X1, . . . , Xn) which is an IID sample from an unknown distribution F0. The
distribution F0 is approximated by a distribution F1 that depends on the sam-
ple (for instance the empirical distribution). Given a functional ft from a class
{ft : t ∈ T } we wish to find a value t0 that solves

E[ft(F0, F1) | F0] = 0. (23.1)
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This is called the population equation. For example if h(F0) = (
∫

xF0(dx))
r and

F1 = F̂n, then h(F1) = (n−1
∑n

i=1 Xi)
r. This estimate of h(F0) will typically be

biased. To correct for the bias we can take

ft(F0, F1) = h(F1)− h(F0) + t (23.2)

and t0 that solves (23.1). The bias corrected estimate is h(F1) + t0. For the
symmetric confidence interval we would take

ft(F0, F1) = I{h(F1)− t ≤ h(F0) ≤ h(F1) + t} − γ. (23.3)

In some situations, such as with the confidence interval for the normal sample
above, we can solve the sample equation. However, in many situations we cannot.
Then we can try to obtain as approximate solution by replacing F0 by F1 and F1

by F2 where F2 is a distribution that depend on a sample drawn from F1. The
resulting equation is then

E[ft(F1, F2) | F1] = 0.

This is called the sample equation. The solution t̂0 to the sample equation is used
instead of t0. The idea is that t̂0 is a good approximation of t0. This is called the
bootstrap principle.

There are essentially two ways to choose F1 and F2.

• F1 is the empirical distribution F̂n of X = (X1, . . . , Xn). This is referred
to as the nonparamteric bootstrap. F2 is then taken to be the empirical
distribution F ∗ of an IID sample X∗ = (X∗

1 , . . . , X
∗

n) from F̂n.
• If F0 is assumed to belong to a parametric family F = {Fθ : θ ∈ Ω}. Let

Θ̂ be an estimate of Θ. Then we take F1 = FΘ̂. Let X∗ = (X∗

1 , . . . , X
∗

n)

be an IID sample from F1 and Θ̂∗ an estimate of Θ based on X∗. Then we
put F2 = FΘ̂∗

. This is called the parametric bootstrap.

Bias reduction. Let ft be given by (23.2). Then the sample equation assumes
the form

E[h(F2)− h(F1) + t | F1] = 0

and the solution is

t̂0 = h(F1)− E[h(F2) | F1].

Thus the bootstrap-reduced bias estimate is

h(F1) + t̂0 = 2h(F1)− E[h(F2) | F1].

The expected value E[h(F2) | F1] may be difficult to compute analytically but can
always be computed by simulation: For i = 1, . . . , N

• Let X∗,i = (X∗

i1, . . . , X
∗

in) be an IID sample from the set {X1, . . . , Xn}
drawn from F1 (F1 = F̂n in nonparametric case and F1 = FΘ̂ in parametric
case) . Let F ∗

i be the empirical distribution of X∗

i1, . . . , X
∗

in in nonpara-

metric case and F ∗

i = FΘ̂∗

i

where Θ̂∗

i is estimate of Θ based on X∗,i in

parametric case.
• Put Ri = h(F ∗

i ).

• Compute E[h(F2) | F1] by N−1
∑N

i=1 Ri.
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We can get arbitrary accuracy of E[h(F2) | F1] by taking N sufficiently large (by
the SLLN). However, the performance depend on how good the approximation F1 of
F0 is. (Hall, 1992, “The Bootstrap and Edgeworth Expansions” obtain asymptotic
results that indicate the accuracy of the approximations).

Example 32. Let µ =
∫

xF (dx) and suppose we want to estimate µ3. We put
h(F0) = µ3. In the nonparametric case, with F1 being the empirical distribution

F̂n we have h(F1) = X̄3
n (with X̄n = n−1

∑n
i=1 Xi). We can calculate

E[h(F1) | F0] = E
[(

µ+ n−1
n
∑

i=1

(Xi − µ)
)3]

= µ3 + n−13µσ2 + n−2γ

with σ2 = E[(X1 − µ)2] and γ = E[(X1 − µ)3]. Similarly we compute

E[h(F2) | F1] = X̄3
n + n−13X̄nσ̂

2 + n−2γ̂

with σ̂2 = n−1
∑n

i=1(Xi − X̄n)
2 and γ = n−1

∑n

i=1(Xi − X̄n)
3. The bootstrap

bias-reduced estimate is then

Θ̂ = 2h(F1)− E[h(F2) | F1] = 2X̄3
n − (X̄3

n + n−13X̄nσ̂
2 + n−2γ̂)

= X̄3
n − n−13X̄nσ̂

2 − n−2γ̂.

Confidence intervals. A symmetric confidence interval may be constructed using
the function ft in (23.3). Then the sample equation becomes

P (h(F2)− t ≤ h(F1) ≤ h(F2) + t | F1)− γ = 0. (23.4)

Since the distribution of h(F2) conditional on F1 is discrete we may not be able to
solve with equality but if n is not very small we can come very close. In any case
we could take

t̂0 = inf{t : P (h(F2)− t ≤ h(F1) ≤ h(F2) + t | F1)− γ ≥ 0}.

We could also consider other confidence intervals such as (h(F1)− t̂01, h(F1) + t̂02)
where t̂01 and t̂02 solve

P (h(F1) ≤ h(F2)− t | F1)− (1− γ)/2 = 0,

P (h(F1) ≤ h(F2) + t | F1)− (1 + γ)/2 = 0,

or one-sided intervals (−∞, h(F1) + t̂03) where t̂03 solves

P (h(F1) ≤ h(F2) + t | F1)− γ = 0.

To find these t̂01, t̂02, and t̂03 we can generate a sample of size N from h(F1)−h(F2)
and take the appropriate empirical quantiles.

Pivotal quantities. Suppose again we want to construct a symmetric confidence
interval so the sample equation is given by (23.4). The performance of the bootstrap
method will depend on if the distribution of h(F1)−h(F2) is a good approximation
for the distribution of h(F0)−h(F1). In some situations we can get an approximation
for the variance of this distribution. Let us consider an example where explicit
computations are possible, to illustrate the point.
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Let X1, . . . , Xn be IID N(µ, σ2) with unknown µ and σ and h(F0) = µ =
∫

xF (dx). In this case we know that with Sn = (n − 1)−1
∑n

i=1(Xi − X̄n)
2 the

quantity

X̄n − µ

Sn/
√
n

has a student-t distribution with n − 1 degrees of freedom. let Tn−1 be the cdf of
this distribution. To construct the confidence interval we choose t such that

P (−t ≤ X̄n − µ

Sn/
√
n

≤ t) = γ. (23.5)

That is t = T−1
n−1((1 + γ)/2), the (1 + γ)/2-quantile. The resulting coefficient

γ confidence interval is (X̄n − tSn/
√
n, X̄n + tSn/

√
n). Obviously, in this case

there is no need for the bootstrap, but for comparison let’s see what the bootstrap
methodology would give us in this case.

We would use the parametric bootstrap. We could use the estimates µ̂ = X̄n

and σ̂2(F1) = S2
n. Then F1 = Fµ̂,σ̂2 is the cdf of a N(X̄n, σ

2(F1)) distribution.
Note that h(F2) = X̄∗

n where X∗ = (X∗

1 , . . . , X
∗

n) is an IID sample from F1.
The quantity we really want is h(F0) − h(F1) = µ − X̄n ∼ N(0, σ2/n) but σ is

unknown. Using the sample equation we want to find the solution to

P (−t ≤ h(F1)− h(F2) ≤ t | F1) = γ.

Now we see that h(F1)−h(F2) = X̄n − X̄∗

n ∼ N(0, σ2(F1)/n). Equivalently we can
write sample equation as

P (−t ≤ σ(F1)√
n

Z ≤ t | F1) = γ

where Z ∼ N(0, 1). Then we see that t should be taken as Φ−1((1 + γ)/2), the
(1 + γ)/2-quantile of the standard normal and the resulting confidence interval is
(X̄n− tSn/

√
n, X̄n+ tSn/

√
n). We see that the difference from the exact confidence

interval comes from the approximation of a t-quantile T−1
n−1((1+γ)/2) by a standard

normal quantile Φ−1((1 + γ)/2).
However, if we instead of h(F0) − h(F1) considers [h(F0) − h(F1)]/σ̂(F1) where

σ2(F1) is an estimate of the variance of h(F0), then we will do much better (note
that above we used σ̂2(F1) as an estimate of the variance of F0 but here we want an
estimate of the variance of h(F0) so when h(F0) = µ we could take σ2(F1) = S2

n/n).
In this case we would take

ft(F0, F1) = I{−t ≤ h(F0)− h(F1)

σ(F1)
≤ t} − γ.

The population equation becomes

P (−t ≤ h(F0)− h(F1)

σ(F1)
≤ t | F0) = γ.

If σ2(F1) = S2
n/n then we see that this is again (23.5) and we can solve the pop-

ultation equation exactly. The important thing is that the ratio h(F0)−h(F1)
σ̂(F1)

has a

distribution that does not depend on the parameters. It is called a pivotal quantity.
Then the bootstrap method is also expected to work well. Suppose we didn’t rec-
ognize that we can actually solve the population equation and we proceed instead
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with the parametric bootstrap. Then the sample equation becomes

P (−t ≤ h(F1)− h(F2)

σ(F2)
≤ t | F1) = γ.

Note that

h(F1)− h(F2)

σ(F2)
=

X̄n − X̄∗

n

S∗

n/
√
n

given F1 also has a student-t distribution with n− 1 degrees of freedom. To find t̂0
we have to take the (1 + γ)/2-quantile, i.e. t̂0 = T−1

n−1((1 + γ)/2) and the resulting

confidence interval is (X̄n − t̂0Sn/
√
n, X̄n + t̂0Sn/

√
n). This is exactly the correct

coefficient γ confidence interval. The key issue here is that we could find a pivotal
quantity that did not depend on the parameters. Often this method of dividing
by some standard deviation estimate works well. The reason is that the quantity
h(F0)−h(F1)

σ(F1)
may not be pivotal but often close to pivotal. Its distribution is better

approximated by the bootstrap method than the distribution of h(F0)− h(F1).


