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HENRIK HULT

Lecture 1

1. Mathematical introduction to statistics

In this section we have a look at the mathematical foundation of statistics.
Throughout the course we will try to first give an elementary introduction, not
using measure theoretic probability, in order to get a sense of what is going on. In
the elementary approach one can work with discrete or continuous densities. We
will use the notation of continuous densities, but these can just as well be replaced
by discrete ones and integrals replaced by sums.

1.1. Elementary introduction. Usually one starts with a number of observed
data, X = (X1, . . . , Xn), where Xi are random variables with values in R. The
distribution of X is unknown but we assume it has a density that depend on an
unknown parameter. We write ⇥ for the unknown parameter and think of it as a
random variable representing the uncertainty of its value and assume that it takes
values in the parameter space ⌦. When the value of ⇥ is ✓ we write P✓ for the
conditional distribution of X given ⇥ = ✓. One may assume that there is a single
“true value” ✓ of the parameter but this value is unknown.

We write fX|⇥(x | ✓) for the conditional probability density of X given ⇥ = ✓.
The density fX|⇥(x | ✓) is the basis of classical statistics. If one observes X = x,
then the function ✓ 7! fX|⇥(x | ✓) is called the likelihood function and is used for
making inferences.

Example 1 (Independent observations). Suppose we have n observations of inde-
pendent random variables X1, . . . , Xn, each with density fXi|⇥(xi | ✓) when ⇥ = ✓.
In this case X = (X1, . . . , Xn) and µX|⇥(· | ✓) is a probability measure on Rn with
density

fX|⇥(x, ✓) =
n
Y

i=1

fXi|⇥(xi | ✓).

After observing (X1, . . . , Xn) = (x1, . . . , xn) the likelihood function L(✓) is the
function ✓ 7!

Qn
i=1 fXi|⇥(xi | ✓).

Example 2 (Independent and identically distributed observations). If we in ad-
dition suppose that the independent random variables are identically distributed,
then fXi|⇥(xi | ✓) = fX1|⇥(xi | ✓) and P✓ is a probability measure on Rn with
density

fX|⇥(x, ✓) =
n
Y

i=1

fX1|⇥(xi | ✓).
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1.2. General introduction. Let us now take a look at the general setting. We
will use measure theory based probability and essentially repeat the “elementary
introduction”. This will enable a general framework where we can study the ele-
ments of statistics. In this section we will be more rigorous with the mathematical
details.

To start let us take an underlying probability space (S,A, µ). S is the abstract
space of outcomes, A is a �-field, and µ a probability measure. We will often use
the notation Pr to denote the underlying probability measure µ. Suppose we do
an experiment where the collected data takes values in the sample space X which
has a �-field B. This space is denoted (X ,B). The observed data is denoted by
X, where X : S ! X is a random variable (i.e. it is a measurable mapping). We
will use the term random variable in a general sense. That is X could be a general
space. Often X will be some familiar space, for instance, X could be a vector of
random variables X = (X1, . . . , Xn), in which case X = Rn, but it may also be
a continuous stochastic process, in which case X is the space C[0, 1] of continuous
functions. The distribution of X (which is a probability measure on B) is unknown
but we assume that it belongs to P0 which is a parametric family of probability
measures (probability distributions) on B. The probability measures in the family
P0 are indexed by a parameter ✓ taking values in the space ⌦ with �-field ⌧ . It is
assumed that the parametric family P0 can be written as P0 = {P✓ : ✓ 2 ⌦}. We
assume that (i) for each ✓ 2 ⌦, P✓(·) is a probability measure on B and (ii) for each
B 2 B the function ✓ 7! P✓(B) is a measurable function on ⌦.

Reminder: Let X and ⇥ be random variables on a probability space (S,A, µ). Recall

that (a version of) the conditional distribution of X given ⇥ is a mapping µX|⇥ on

B ⇥ ⌦ such that

(i) for each ✓ 2 ⌦, µX|⇥(· | ✓) is a probability measure on B.
(ii) for each B 2 B, µX|⇥(B | ·) is a measurable function on ⌦.

Note that we have defined P✓ to be a conditional distribution. An alternative
is to represent the uncertainty of the parameter ⇥ as a random variable, i.e. as
a measurable mapping from S to ⌦. The joint distribution of (X,⇥) is then a
probability measure on B ⇥ ⌧ given by

µX,⇥(B) = Pr(s : (X(s),⇥(s)) 2 B), B 2 B ⇥ ⌧.

Then one can define the conditional distribution of X given ⇥ = ✓ and write P✓

for the conditional distribution of X given ⇥ = ✓. Correspondingly we write E✓ for
the expected value under P✓. We will also use the notation µX|⇥(· | ✓) to denote
the conditional distribution P✓.

It should be noted that in the classical setup it is su�cient start directly with the
family P0 without first defining ⇥ as a random variable. For instance, the classical
paradigm never use the joint distribution of (X,⇥) or the marginal distribution of
X or ⇥. However, to fit the classical and the Bayesian into the same framework we
will think about ⇥ as a random variable and P✓ as the conditional distribution of
X given ⇥ = ✓.
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If, for each ✓ 2 ⌦, P✓ has a density fX|⇥(x | ✓) (measureable B⇥ ⌧) with respect
to a measure ⌫, that is P✓ ⌧ ⌫ and

fX|⇥(x | ✓) = dP✓

d⌫
(x), for each ✓ 2 ⌦,

then for fixed x, ✓ 7! fX|⇥(x | ✓) is called the likelihood function and is denoted
L(✓). Usually the reference measure ⌫ will be Lebesgue measure or counting mea-
sure but it can be more general.

Reminder: Recall that a measure µ is absolutely continuous with respect to a measure

⌫, written µ ⌧ ⌫, if ⌫(B) = 0 implies µ(B) = 0 and in that case the Radon-Nikodym

Theorem guarantees the existence of a density f(x) =

dµ
d⌫ (x) such that

Z
h(x)µ(dx) =

Z
h(x)f(x)⌫(dx)

for each integrable function h.

2. Bayesian statistics

2.1. Elementary Bayesian statistics. In the Bayesian paradigm it is assumed
that ⇥ is a random variable and some prior knowledge of the parameter ⇥ is avail-
able. The information about ⇥ is put into the model by specifying the prior dis-
tribution with density f⇥(✓). The densities fX|⇥(x | ✓) and f⇥(✓) can be combined
to obtain the joint density of (X,⇥) given by

fX,⇥(x, ✓) = fX|⇥(x | ✓)f⇥(✓).
Once the joint density is specified we can also derive the marginal density of X

fX(x) =

Z

⌦
fX|⇥(x | ✓)f⇥(✓)d✓.

An important ingredient in the Bayesian paradigm is the posterior distribution
given the observation X = x. Its density is given by Bayes’ theorem as

f⇥|X(✓ | x) = fX,⇥(x, ✓)

fX(x)
=

fX|⇥(x | ✓)f⇥(✓)
R

⌦ fX|⇥(x | ✓)f⇥(✓)d✓
.

The posterior distribution of ⇥ given X = x can be thought of as the updated
beliefs about ⇥ after taking into accound the observation X = x.

In Bayesian statistics all inference in based on the posterior distribution. Note
that the di↵erence from classical statistics is that the posterior density is just the
likelihood function multiplied by the prior density and then normalized to become
a probability distribution.

2.2. General framework. The general Bayesian setup is similar to the classical
case. We consider the data X and the parameter ⇥ as random variables. The
joint distribution of (X,⇥) is denoted by µX,⇥. It is specified by choosing the
marginal distribution µ⇥ of ⇥, called the prior distribution and the conditional
distribution µX|⇥(· | ✓), which we also denote by P✓, from a parametric family
P0 = {P✓ : ✓ 2 ⌦}. Once the prior distribution and the conditional distribution are
specified the joint distribution is given by

µX,⇥(B ⇥A) =

Z

A

µX|⇥(B | ✓)µ⇥(d✓).
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The it is easy to derive the marginal distributions of X and ⇥ as

µX(B) =

Z

X⇥⌦
IB(x)µX,⇥(dx, d✓),

µ⇥(A) =

Z

X⇥⌦
IA(✓)µX,⇥(dx, d✓).

If, for each ✓, P✓ (or which is the same µX|⇥(· | ✓)) has a density fX|⇥(x | ✓)
w.r.t. a measure ⌫, then we can write

P✓(B) = µX|⇥(B | ✓) =
Z

B

fX|⇥(x | ✓)⌫(dx).

Using Fubini’s theorem the marginal distribution of X can be written as

µX(B) =

Z

⌦

Z

B

fX|⇥(x | ✓)⌫(dx)µ⇥(d✓) =

Z

B

h

Z

⌦
fX|⇥(x | ✓)µ⇥(d✓)

i

⌫(dx)

and we see that the density of µX w.r.t. ⌫ is

fX(x) =

Z

⌦
fX|⇥(x | ✓)µ⇥(d✓).

If, in addition, µ⇥ has a density f⇥ w.r.t. a measure ⇢ on ⌧ (recall that ⌧ is the
�-field on the parameter space ⌦) then the marginal density of X w.r.t. ⌫ becomes

fX(x) =

Z

⌦
fX|⇥(x | ✓)f⇥(✓)⇢(d✓).

2.3. Posterior distribution. Once we have observed the data X = x, we can
use Bayes’ theorem to write down the conditional distribution of ⇥ given X = x.
This distribution is called the posterior distribution and is of central importance in
Bayesian statistics. Here is a general version of Bayes’ theorem.

Theorem 1 (Bayes’ theorem). Suppose there is a measure ⌫ on B such that P✓ ⌧ ⌫
for each ✓ 2 ⌦ and let fX|⇥(x | ✓) be the density. Let µ⇥|X(· | x) be the conditional
distribution of ⇥ given X = x. Then µ⇥|X(· | x) ⌧ µ⇥ µX-a.s. and

dµ⇥|X

dµ⇥
(✓ | x) =

fX|⇥(x | ✓)
R

⌦ fX|⇥(x | #)µ⇥(d#)

for those x such that the denominator is neither 0 nor 1. Moreover, µX{x :
R

⌦ fX|⇥(x | #)µ⇥(d#) = 0 or 1} = 0 and µ⇥|X can be artbitrarily defined on this
set.

Remark 1. If the prior distribution µ⇥ has density f⇥ wrt a measure ⇢ on ⌧ and
P✓ has density fX|⇥(· | ✓) wrt ⌫ on B, then the posterior distribution of ⇥ given
X = x has a density (wrt ⇢) given by

f⇥|X(✓ | x) = fX,⇥(x, ✓)
R

⌦ fX,⇥(x, ✓)⇢(d✓)
=

fX|⇥(x | ✓)f⇥(✓)
R

⌦ fX|⇥(x | ✓)f⇥(✓)⇢(d✓)
.

Density proof. Suppose that all relevant densities exists and that densities are w.r.t.
Lebesgue measure. Then Bayes’ theorem simply says that

f⇥|X(✓ | x) =
fX|⇥(x | ✓)f⇥(✓)

R

⌦ fX|⇥(x | ✓)f⇥(✓)d✓
. (2.1)

This is just a consequence of the “elementary” definition of conditional density as
fX|⇥(x | ✓) = fX,⇥(x, ✓)/f⇥(✓). We need to watch out that we do not plug in



LECTURE NOTES 5

values of x where fX(x) = 0 or 1 in (2.1), but that should not be big a concern
since if C is the set of those values, then we must have Pr(X 2 C) = 0. ⇤

For the sake of completeness, here is a formal proof in the general case.

Proof. Let us start with the second claim. Write

C0 = {x :

Z

⌦
fX|⇥(x | #)µ⇥(d#) = 0}

C1 = {x :

Z

⌦
fX|⇥(x | #)µ⇥(d#) = 1}

and note that

µX(C0) =

Z

C0

Z

⌦
fX|⇥(x | #)µ⇥(d#)⌫(dx) = 0.

For C1 we have

1 > µX(C1) =

Z

C1

Z

⌦
fX|⇥(x | #)µ⇥(d#)⌫(dx).

Hence, we must have ⌫(C1) = 0 and then it follows that µX(C1) = 0.
To prove the claim for the Radon-Nikodym density observe that for B 2 B and

A 2 ⌧ we have on one hand

Pr(X 2 B,⇥ 2 A) = µX,⇥(B ⇥A)

=

Z

B

µ⇥|X(A | x)µX(dx)

=

Z

B

h

µ⇥|X(A | x)
Z

⌦
fX|⇥(x | #)µ⇥(d#)

i

⌫(dx).

On the other hand we have by Fubini’s theorem

Pr(X 2 B,⇥ 2 A) =

Z

A

µX|⇥(B | #)µ⇥(d#) =

Z

A

h

Z

B

fX|⇥(x | #)⌫(dx)
i

µ⇥(d#)

=

Z

B

h

Z

A

fX|⇥(x | #)µ⇥(d#)
i

⌫(dx).

Combining these two we see that ⌫-a.e. (and hence µX -a.s.)

µ⇥|X(A | x) =
R

A
fX|⇥(x | #)µ⇥(d#)

R

⌦ fX|⇥(x | #)µ⇥(d#)
=

Z

A

fX|⇥(x | ✓)
R

⌦ fX|⇥(x | #)µ⇥(d#)
µ⇥(d✓).

In particular µ⇥|X(· | x) ⌧ µ⇥ µX -a.s. and the Radon-Nikodym density is the
desired one. ⇤

Remark 2. Generalized prior distributions.

2.4. Posterior predictive distribution of future values. Suppose that X =
(X1, . . . , Xn) and we have observed X = x = (x1, . . . , xn). To compute the proba-
bility of future events, the Bayesian methodology proposes to use

Pr(Xn+1 2 A1, . . . , Xn+k 2 Ak | X = x)

=

Z

⌦
Pr(Xn+1 2 A1, . . . , Xn+k 2 Ak | ⇥ = ✓, X = x)µ⇥|X(d✓ | x).

This distribution is called the posterior predictive distribution of future values.
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Example 3. If the Xi’s are assumed conditionally IID given ⇥ = ✓ then the
posterior predictive distribution of future values is given by

Pr(Xn+1 2 A1, . . . , Xn+k 2 Ak | X = x) =

Z

⌦

k
Y

i=1

µXi|⇥(Ai | ✓)µ⇥|X(d✓ | x).

If µX1|⇥(· | ✓) has a density fX1|⇥(x | ✓) wrt a measure ⌫ then the posterior
predictive distribution has density

fXn+1,...,Xn+k|X1,...,Xn
(xn+1, . . . , xn+k | x1, . . . , xn)

=

Z

⌦

k
Y

i=1

fX1|⇥(xn+i | ✓)µ⇥|X(d✓ | x1, . . . , xn).
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Lecture 2

3. Some common distributions in classical and Bayesian statistics

3.1. Conjugate prior distributions. In the Bayesian setting it is important to
compute posterior distributions. This is not always an easy task. The main di�-
culty is to compute the normalizing constant in the denominator of Bayes theorem.
However, for certain parametric families P0 = {P✓ : ✓ 2 ⌦} there are convenient
choices of prior distributions. Particularly convenient is when the posterior belongs
to the same family of distributions as the prior. Such families are called conjugate
families.

Definition 1. Let F denote a class of probability densities f(x | ✓). A class ⇧ of
prior distributions is a conjugate family for F if the posterior distribution is in the
class ⇧ for all f 2 F , all priors in ⇧, and all x 2 X .

(See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Example 4 (Casella & Berger, Example 7.2.14). Let X1, . . . , Xn be IID Ber(✓)
given ⇥ = ✓ and put Y =

Pn
i=1 Xi. Then Y ⇠ Bin(n, ✓). Let the prior distribution

be Beta(↵,�). Then the posterior of ⇥ given Y = y is Beta(y + ↵, n� y + �).
The joint density is

fY,⇥(y, ✓) = fY |⇥(y | ✓)f⇥(✓)

=

✓

n

y

◆

✓y(1� ✓)n�y �(↵+ �)

�(↵)�(�)
✓↵�1(1� ✓)��1

=

✓

n

y

◆

�(↵+ �)

�(↵)�(�)
✓y+↵�1(1� ✓)n�y+��1.

The marginal density of Y is

fY (y) =

Z 1

0
fY,⇥(y, ✓)d✓

=

✓

n

y

◆

�(↵+ �)

�(↵)�(�)

Z 1

0
✓y+↵�1(1� ✓)n�y+��1d✓

=

✓

n

y

◆

�(↵+ �)

�(↵)�(�)

�(y + ↵)�(n� y + �)

�(n+ ↵+ �)

(this distribution is known as the Beta-binomial distribution). The posterior is
then computed as

f⇥|Y (✓ | y) = fY,⇥(y, ✓)

fY (y)
=

�(n+ ↵+ �)

�(y + ↵)�(n� y + �)
✓y+↵�1(1� ✓)n�y+��1.

This is the density of the Beta(y + ↵, n� y + �) distribution.

4. Exponential families

Exponential families of distributions are perhaps the most widely used family of
distributions in statistics. It contains most of the common distributions that we
know from undergraduate statistics.
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Definition 2. A parametric family of distributions P0 = {P✓ : ✓ 2 ⌦} with
parameter space ⌦ and conditional density fX|⇥(x | ✓) with respect to a measure
⌫ is called an exponential family if

fX|⇥(x | ✓) = c(✓)h(x) exp
n

k
X

i=1

⇡i(✓)ti(x)
o

for some measurable functions c, h,⇡1, . . . ,⇡k, t1, . . . , tk, and some integer k.

Example 5. If X are conditionally IID Exp(✓) given ⇥ = ✓ then it follows that
fX|⇥(x | ✓) = ✓�n exp{�✓�1

Pn
i=1 xi} so this is an one-dimensional exponential

family with c(✓) = ✓�n, h(x) = 1, ⇡(✓) = 1/✓, and t(x) = x1 + · · ·+ xn.

Example 6. If X are conditionally IID Ber(✓), then with m = x1 + · · · + xn, we
have

fX|⇥(x | ✓) = ✓m(1� ✓)n�m = (1� ✓)n
⇣ ✓

1� ✓

⌘m

= (1� ✓)n exp
n

log
⇣ ✓

1� ✓

⌘

m
o

.

so this is also a one-dimensional exponential family with c(✓) = (1� ✓)n, h(x) = 1,
⇡(✓) = log(✓/(1� ✓)), and t(x) = x1 + · · ·+ xn.

There are many other examples as the Normal, Poisson, Gamma, Beta distribu-
tions (see Casella & Berger, Exercise 3.28, p. 132).

Note that the function c(✓) can be thought of as a normalizing function to make
fX|⇥ a probability density. It is necessary that

c(✓) =
⇣

Z

X
h(x) exp

n

k
X

i=1

⇡i(✓)ti(x)
o

⌫(dx)
⌘�1

so the dependence on ✓ comes through the vector (⇡1(✓), . . . ,⇡k(✓)) only. It is
useful to have a name for this vector; it will be called the natural parameter.

Definition 3. For an exponential family the vector ⇧ = (⇡1(⇥), . . . ,⇡k(⇥)) is
called the natural parameter and

� =
n

⇡ 2 Rk :

Z

X
h(x) exp

n

k
X

i=1

⇡iti(x)
o

⌫(dx) < 1
o

the natural parameter space.

When we deal with an exponential family it is convenient to use the notation ⇥ =
(⇥1, . . . ,⇥k) for the natural parameter and ⌦ for the parameter space. Therefore
we will often write

fX|⇥(x | ✓) = c(✓)h(x) exp
n

n
X

i=1

✓iti(x)
o

(4.1)

and ⌦ for the natural parameter space � and hope that this does not cause confu-
sion.

For an example on how to write the normal distribution as an exponential family
with its natural parametrisation see Examples 3.4.4 and 3.4.6, pp. 112-113 in Casella
& Berger.
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4.1. Conjugate priors for exponential families. Let us take a look at conjugate
priors for exponential families. Suppose that the conditional distribution of X =
(X1, . . . , Xn) given ⇥ = ✓ forms a natural exponential family (4.1). We will look
for a “natural” family of priors that serves as conjugate priors. If f⇥(✓) is a prior
(w.r.t. a measure ⇢ on ⌦) then the posterior has density

f⇥|X(✓ | x) =
fX|⇥(x | ✓)f⇥(✓)

R

⌦ fX|⇥(x | ✓)f⇥(✓)⇢(d✓)

=
c(✓)e

Pk
i=1 ✓iti(x)f⇥(✓)

R

⌦ c(✓)e
Pk

i=1 ✓iti(x)f⇥(✓)⇢(d✓)
.

Then a natural choice for the conjugate family is densities of the form

f⇥(✓) =
c(✓)↵e

Pk
i=1 ✓i�i

R

⌦ c(✓)↵e
Pk

i=1 ✓i�i⇢(d✓)
,

where ↵ > 0 and � = (�1, . . . ,�k).
Indeed, the posterior is then proportional to

c(✓)↵+1 exp
n

k
X

i=1

✓i(ti(x) + �i)
o

which is of the same form as the prior (after putting in the right normalizing
constant). Note that the posterior is an exponential family with natural parameter
⇠ = t+ � and representation

c0(⇠)h0(✓) exp
n

k
X

i=1

⇠i✓i

o

,

where h0(✓) = c(✓)↵+1 and c0(⇠) is the normalizing constant to make it a probability
density.

Example 7. Take another look at the family of n iid Ber(p) variables (see Example
6. The natural parameter is ✓ = log(p/1�p) and then c(✓) = (1�p)n = (1+e✓)�n.
Then the proposed conjugate prior is proportional to

c(✓)↵e✓� = (1� p)↵np�(1� p)�� = p�(1� p)↵n��

which is a Beta(� + 1,↵n � � + 1) distribution (when you put in the normaliza-
tion). So again we see that Beta-distributions are conjugate priors for IID Bernoulli
random variables (here ↵ and � are not the same as in Example 4, though).

4.2. Some properties of exponential families. The random vector T (X) =
(t1(X), . . . , tk(X)) is of great importance for exponential families. We can compute
the distribution and density of T with respect to a measure ⌫0T to be introduced.

Suppose P✓ ⌧ ⌫ for all ✓ with density fX|⇥ as above. Let us write

g(✓, T (x)) = c(✓) exp
n

k
X

i=1

✓iti(x)
o

,

so fX|⇥(x | ✓) = h(x)g(✓, T (x)). Write T for the space where T takes its values
and C for the �-field on T . Introduce the measure ⌫0(B) =

R

B
h(x)⌫(dx) for B 2 B



10 HENRIK HULT

and ⌫0T (C) = ⌫0 � T�1(C) for C 2 C. Then we see that

µT |⇥(C | ✓) = µX|⇥(T
�1C | ✓)

=

Z

T�1C

fX|⇥(x | ✓)⌫(dx)

=

Z

T�1C

g(✓, T (x))⌫0(dx)

=

Z

C

g(✓, t)⌫0T (dt).

Hence, µT |⇥(· | ✓) has a density g(✓, t) with respect to ⌫0T . This is nothing but
rewriting the density of an exponential family but it truns out to be useful when
studying properties of an exponential family.

In concrete situations one may identify what ⌫0T is. Here is an example.

Example 8. Consider the exponential family of n IID Exp(✓) random variables as
in Example 5. Then t(x) = x1 + · · · + xn and T = t(X) has �(n, ✓) distribution.
Thus, T has density w.r.t. Lebesgue measure which is

fT |⇥(t | ✓) = ✓�ne�t/✓ t
n�1

�(n)
.

In this case we can identify c(✓) = ✓�n and hence g(✓, t) = ✓�ne�t/✓ and ⌫0T must
have density tn�1/�(n) w.r.t. Lebesgue measure. This is also possible to verify
another way. Since ⌫0T (B) = ⌫(T�1B) where ⌫ is Lebesgue measure we see that

⌫0T ([0, t]) = ⌫{x 2 [0,1)n : 0  x1 + · · ·+ xn  t}

=

Z

0x1+···+xnt

dx1 . . . dxn = tn/n!.

Di↵erentiating this w.r.t. t gives the density tn�1/�(n) with respect to Lebesgue
measure (Recall that �(n) = (n� 1)!).

Theorem 2. The moment generating function MT (u) of T for an exponential
family is given by

MT (u) = MT (u1, . . . , uk) =
c(✓)

c(u+ ✓)
.

Proof. Since

c(✓) =
⇣

Z

X
h(x) exp

n

k
X

i=1

✓iti(x)
o

⌫(dx)
⌘�1

=
⇣

Z

T
exp

n

k
X

i=1

✓iti

o

⌫0T (dt)
⌘�1

it follows that

MT (u) = E✓

h

exp
n

k
X

i=1

uiTi

oi

=

Z

T
exp

n

k
X

i=1

uiti

o

c(✓) exp
n

k
X

i=1

✓iti

o

⌫0T (dt) =
c(✓)

c(u+ ✓)
.

⇤
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Hence, whenever ✓ is in the interior of the parameter space all moments of T are
finite and can be computed. We call the function

(✓) = � log c(✓)

the cumulant function. The cumulant function is useful to compute moments of
T (X).

Theorem 3. For an exponential family with cumulant function  we have

E✓[Ti] =
@

@✓i
(✓),

cov✓(Ti, Tj) =
@2

@✓i@✓j
(✓).

Proof. For the mean we have

E✓[Ti] =
@

@ui
MT (u)

�

�

�

u=0

=
@

@ui

c(✓)

c(u+ ✓)

�

�

�

u=0

= �
@
@✓i

c(✓)

c(✓)

= � @

@✓i
log c(✓).

The proof for the covariance is similar. ⇤
Theorem 4. The natural parameter space ⌦ of an exponential family is convex
and 1/c(✓) is a convex function.

Proof. Let ✓1 = (✓11, . . . , ✓1k) and ✓2 = (✓21, . . . , ✓2k) be points in ⌦ and � 2 (0, 1).
Then, since the exponential function is convex

1

c(�✓1 + (1� �)✓2)
=

Z

X
h(x) exp{

n
X

i=1

[�✓1i + (1� �)✓2i]ti(x)}⌫(dx)


Z

X
h(x)[� exp{

n
X

i=1

✓1iti(x)}+ (1� �) exp{
n
X

i=1

✓2iti(x)}⌫(dx)

= �
1

c(✓1)
+ (1� �)

1

c(✓2)
.

Hence, 1/c is convex. Since ✓ 2 ⌦ if 1/c(✓) < 1 it follows also that �✓1+(1��)✓2 2
⌦. Thus, ⌦ is convex. ⇤
4.3. Exponential tilting. Let X be a random variable with moment generating
function M(u) = E[euX ] < 1. Then the probability distribution given by

Pu(B) =
E[euXI{X 2 B}]

M(u)
,

is called an exponentially tilted distribution. If X has a density f w.r.t. a measure
⌫ then Pu has density w.r.t. ⌫ given by

fu(y) =
euyf(y)

M(u)
.
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Now, if f(y) is the density of a natural exponential family, f(y) = c(✓)h(y) exp{✓y},
then the density of the exponentially tilted distribution is

fu(y) =
euyf(y)

M(u)
=

c(✓)h(y) exp{(✓ + u)y}
c(✓)/c(✓ + u)

= c(✓ + u)h(y) exp{(✓ + u)y}.

Hence, for an exponential family, exponential tilting by u is identical to shifting the
parameter by u.

This also suggests how to construct exponential families; start with a probability
distribution µ with density f and consider the family of all exponential tilts. This
forms an exponential family. Indeed, if we tilt f by ✓ the resulting density is

f✓(x) =
1

M(✓)
f(y) exp{✓y},

so putting c(✓) = 1/M(✓) and h(y) = f(y) yields the representation of a natural
exponential family.

4.4. Curved exponential family. Consider for example the family {N(✓, ✓2); ✓ 2
R}. Is this an exponential family? Let us check.

The density is given by

fX|⇥(x | ✓) = 1p
2⇡✓

exp
n

� 1

2✓2
(x� ✓)2

o

=
1p
2⇡✓

exp
n

� 1

2

o

exp
n

� x2

2✓2
+

x

✓

o

.

This is an exponential family with ⇡1(✓) = 1/(2✓2) and ⇡2(✓) = 1/✓. Hence, the
natural parameter ⇡ = (⇡1,⇡2) can only take values on a curve. Such a family will
be called a curved exponential family.

Definition 4. A parametric family of distributions P0 = {P✓ : ✓ 2 ⌦} with
parameter space ⌦ is called a curved exponential family if it is an exponential
family, i.e.

fX|⇥(x | ✓) = c(✓)h(x) exp
n

k
X

i=1

⇡i(✓)ti(x)
o

,

and the dimension d of the vector ✓ satisfies d < k.
If d = k the family is called a full exponential family.

5. Location-scale families

In the last section we saw that exponential families are generated by starting
with a particular density and then considering the family of all exponential tilts.
In this section we will see what happens if we instead of exponential tilts simply
shift and scale the random variable, i.e. we do linear transformations.

Exercise: Let X have a probability density f . Consider Y = �X + µ for some
� > 0 and µ 2 R. What is the density of Y ?

Theorem 5. Let f be a probability density and µ and � > 0 be constants. Then

g(x | µ,�) = 1

�
f
⇣x� µ

�

⌘

dx

is a probability density.
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Proof. Casella and Berger p. 116.. ⇤
Definition 5. Let f be a probability density.

(i) The family of probability densities {f(x � µ);µ 2 R} is a location family
with location parameter µ.

(ii) The family of probability densities {f(x/�)/�;� > 0} is a scale family with
scale parameter �.

(iii) The family of probability densities {f((x � µ)/�)/�;µ 2 R,� > 0} is a
location-scale family with location parameter µ and scale parameter �.

Example 9. The family of normal distributions N(µ,�) is a location-scale family.
Indeed, with ' being the standard normal density,

'µ,�(x) =
1

�
p
2⇡

exp{�(x� µ)2/(2�2)} =
1

�
'((x� µ)/�))

Before getting deeper into the fundamentals of statistics we take a look at some
distributions that appear frequently in statistics. These distributions will provide
us with examples throughout the course.
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Additional material that you probably know...

5.1. Normal, Chi-squared, t, and F . Here we look at some common distribu-
tions and their relationship. From elementary statistics courses it is known that
the sample mean

X̄n =
1

n

n
X

i=1

Xi

of IID random variables X1, . . . , Xn can be used to estimate the expected value
EXi and that the sample variance

S2 =
1

n� 1

n
X

i=1

(Xi � X̄)2

is used to estimate the variance Var(Xi).
The distribution of X̄n and S is important in the construction of confidence

intervals and hypothesis tests. The most popular situation is when X1, . . . , Xn are
IID N(µ,�2). The following result may be familiar.

Lemma 1. Let X1, . . . , Xn be IID N(µ,�2). Then, X̄ and S2 are independent and

X̄ ⇠ N(µ,�2/n), (5.1)

(n� 1)S2

�2
⇠ �2(n� 1), (5.2)

X̄ � µ

S/
p
n

⇠ t(n� 1). (5.3)

Moreover, if X̃1, . . . , X̃m is IID N(µ̃, �̃2) and independent of X1, . . . , Xn, then

S2

�2
· �̃

2

S̃2
⇠ F (n� 1,m� 1). (5.4)

It is a good exercise to prove the above lemma. If you get stuck, Section 5.3
in Casella & Berger contains the proof.

As a reminder we will show how Lemma 1 is used in undergraduate statistics.
Suppose we have a sample X = (X1, . . . , Xn) that have IID N(µ,�2) distribution.

5.1.1. Confidence interval for µ with � known. If we estimate µ by X̄n and � is
known, then we can use (5.1) to derive a (1 � ↵)-confidence interval for µ of the
form X̄n ± �p

n
z↵/2, where z↵ is such that �(z↵) = 1� ↵. Indeed,

Pµ

⇣

X̄n � �p
n
z↵/2  µ  X̄n +

�p
n
z↵/2

⌘

= Pµ

⇣

� z↵/2  X̄n � µ

�
p
n

 z↵/2

⌘

= 1� ↵.

5.1.2. Confidence interval for µ with � unknown. If we estimate µ by X̄n and � is
unknown, then we can estimate � by S and use (5.3) to derive a (1�↵)-confidence
interval for µ of the form X̄n ± Sp

n
t↵/2, where t↵ is such that t(z↵) = 1 � ↵ and

t(x) is the cdf of the t-distribution with n� 1 degrees of freedom. Indeed,

Pµ,�

⇣

X̄n � Sp
n
t↵/2  µ  X̄n +

Sp
n
t↵/2

⌘

= Pµ,�

⇣

� t↵/2  X̄n � µ

S
p
n

 t↵/2

⌘

= 1� ↵.
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Lecture 3

6. De Finetti’s theorem

In this lecture we discuss how one can replace the common assumption that there
exists a parameter ⇥ such that the observations X1, . . . , Xn are conditionally IID
given ⇥ = ✓, by something which (at first) looks weaker and is called exchangeabil-
ity. We do the analysis for Bernoulli random variables. All the references in this
lecture refers to Schervish ”Theory of Statistics”.

6.1. Exchangeability. First we need to know what exchangeable is. The interpre-
tation of an exchangeable collection of random variables is that it does not matter
in which order we collected the data.

Definition 6. (i) A finite set X1, . . . , Xn of random elements is exchangeable if
(X1, . . . , Xn)

d= (X⇡(1), . . . , X⇡(n)) for every permutation ⇡ of the numbers 1, . . . , n.
(ii) An infinite collection is exchangeable if every finite subcollection is exchange-

able.

Note that ifX1, . . . , Xn is exchangeable, then theXi’s are identically distributed.

Example 10. A finite or infinite collection of IID random variables is exchangeable.
Indeed, for any permutation ⇡ of {1, . . . , n}

Pr(X1  x1, . . . , Xn  xn) =
n
Y

i=1

Pr(Xi  xi) =
n
Y

i=1

Pr(X⇡(i)  xi)

= Pr(X⇡(1)  x1, . . . , X⇡(n)  xn).

Since this holds for any n we conclude that also an infinite collection if IID random
variables is exchangeable.

Example 11. A finite or infinite collection {Xn} of random variables that are IID
conditioned on some random variable Y is exchangeable. Indeed, for any n � 1
and any permutation ⇡ of {1, . . . , n} we have

P (X1  x1, . . . , Xn  xn) = E[P (X1, x1, . . . , Xn  xn | Y )]

= E[P (X⇡(1), x1, . . . , X⇡(n)  xn | Y )]

= P (X⇡(1), x1, . . . , X⇡(n)  xn).

This is the “typical” form of exchangeability. Sometimes exchangeability is not
so obvious.

Example 12 (Polya’s urn, Example 1.15 p. 9). Suppose we have balls of k di↵erent
colors (denoted 1, . . . , k) and an urn containing ui balls of color i, i = 1, . . . , k. We

assume u =
Pk

i=1 ui > 0, so the urn is nonempty. We draw balls according to the
following rule. Draw a ball at random (uniformly among all the balls in all urns)
and let X1 be the color of that ball. Replace the ball and add another ball with
the same color. Then we repeat the previous step and record X2 as the color for
the second ball etc. We claim that the sequence {Xn} is exchangeable. To see
this, let X = {1, . . . , k} (the colors), n > 0 an integer, and j1, . . . , jn elements of
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X . We want to compute Pr(X1 = j1, . . . , Xn = jn). For i = 1, . . . , k we denote by
ci(j1, . . . , jn) the number of occasions of i among j1, . . . , jn. Formally

ci(j1, . . . , jn) =
n
X

t=1

I{i}(jt).

With the notation (a)t = a(a� 1) . . . (a� t+ 1) for integer t � 1 and (a)0 = 1 we
claim that

Pr(X1 = j1, . . . , Xn = jn) =

Qk
i=1(ui + ci(j1, . . . , jn)� 1)ci(j1,...,jn)

(u+ n� 1)n
.

If the claim is true then we see that {X1, . . . , Xn} are exchangeable for each n
because ci(j1, . . . , jn) does not change if we apply a permutation to j1, . . . , jn. We
can prove the claim by induction. For n = 1 this is Pr(X1 = j1) = uj1/u, which is
true. Suppose it holds for n. Then

Pr(X1 = j1, . . . , Xn+1 = jn+1)

= Pr(X1 = j1, . . . , Xn = jn) Pr(Xn+1 = jn+1 | X1 = j1, . . . , Xn = jn)

= Pr(X1 = j1, . . . , Xn = jn)
ujn+1 + cjn+1(j1, . . . , jn+1)� 1

u+ n
.

Plug in the expression for Pr(X1 = j1, . . . , Xn = jn) and note that

ci(j1, . . . , jn+1) = ci(j1, . . . , jn), i 6= jn+1,

cjn+1(j1, . . . , jn) = cjn+1(j1, . . . , jn+1)� 1.

The claim follows.

6.2. Throwing the thumbtack. So far our basic setup is that X represents the
data and ⇥ the parameter. We also assume that the distribution of X given ⇥ = ✓
belongs to P0 = {P✓ : ✓ 2 ⌦}.

In many cases one has a potentially infinite collection of random variables {Xn}
and stop the experiment after some finite number of observations so that X =
(X1, . . . , Xn). It is common to assume “there exists a parameter ⇥ such that {Xi}
are conditionally IID given ⇥ = ✓”. We shall see how the existence of such a
parameter can be deduced from exchangeability of the sequence.

We start with an example as the setting for our discussion. Suppose we throw a
thumbtack repeatedly and we set Xi = 1 if it lands “point up” and Xi = 0 if it lands
“point down”. We could assume that there is a parameter ⇥ such that conditionally
on ⇥ = ✓ {Xn} are IID Ber(✓). The parameter space is ⌦ = [0, 1]. In the classical
setting the outcome of ⇥ can be considered as the “true value” of the parameter.
It is fixed but unknown. We expect that the “true value” can be interpreted as the
long-term frequency of 1’s. A way to formulate this is, ⇥ = limn!1 n�1

Pn
i=1 Xi

a.s. Let us see how this works in detail.

Proposition 1 (c.f. Lemma 1.61 p. 35). If {Xn} is a sequence of bounded random
variables and there exists a random quantity ⇥ such that conditional on ⇥ = ✓
{Xn} are IID with mean c(✓), then

n�1Sn =
1

n

n
X

i=1

Xi ! ⇥, Pr�a.s.
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Proof. Without loss of generality we can assume that E[Xi | ⇥] = 0. Indeed,
n�1Sn ! c(⇥) a.s. is equivalent to n�1

Pn
i=1(Xi � c(⇥)) ! 0 so putting Yi =

Xi � c(⇥) we see that it is su�cient to consider the case E[Xi | ⇥] = 0.
The idea is to use the first Borel-Cantelli lemma. That is, if we show

1
X

n=1

Pr(|n�1Sn| > ") < 1 (6.1)

for each " > 0, then by the first Borel-Cantelli lemma Pr(|n�1Sn| > " i.o) = 0
8" > 0. In particular the event \1

k=1{|n�1Sn| > k�1 i.o.}c has probability 1 and
n�1Sn ! 0 on this event. Let us show (6.1). Using Chebyshev’s inequality we can
write

Pr(|n�1Sn| > ")  Pr(n�4(
n
X

i=1

Xi)
4 > "4)

 "�4n�4E[(
n
X

i=1

Xi)
4]

= "�4n�4E[(
n
X

i1=1

n
X

i2=1

n
X

i3=1

n
X

i4=1

E[Xi1Xi2Xi3Xi4 | ⇥]

= "�4n�4E[(
n
X

i=1

E[X4
i | ⇥] + 3

n
X

i=1

n
X

j=1

E[X2
i X

2
j | ⇥]]

 "�4n�4[nM4 + 3n(n� 1)M4]

 4M4

n2
.

where we use M as the upper bound for Xi. We see that

1
X

n=1

Pr(|n�1Sn| > ") 
1
X

n=1

4M4

n2
< 1

which completes the proof. ⇤

So far everything seems fine, but how do we motivate the assumption that “there
exists ⇥ such that given ⇥ = ✓ the {Xn} are conditionally IID Ber(✓)”? One could
argue that this assumption is strong and hard to verify. The point of replacing
this “(heavy) probabilistic assumption” with exchangeability is that exchangeabil-
ity reflects only the symmetry of the problem (it does not matter in which order
we throw the thumbtack). The beauty of it all is that then it will follow from De-
Finetti’s theorem that there exists a parameter ⇥ such that conditional on ⇥ = ✓
the sequence {Xn} is IID Ber(✓) and the limit n�1

Pn
i=1 Xi ! ⇥ holds Pr-a.s.

Thus, instead of assuming a lot of structure from the beginning, i.e. “assume there
exists ⇥ such that variables are conditionally IID given ⇥”, it is su�cient to assume
exchangeability and the existence of a parameter ⇥ with the right properties will
follow from DeFinetti’s representation theorem.

6.3. DeFinetti’s representation theorem for Bernoulli random variables.
In the Bernoulli case DeFinetti’s representation theorem is as follows.
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Theorem 6 (c.f. Theorem 1.47 p. 26). Let {Xn} be an infinite sequence of Bernoulli
random variables. {Xn} is exchangeable if and only if there exists a random vari-
able ⇥ with vales in [0, 1] such that, conditional on ⇥ = ✓, {Xn} are IID Ber(✓).
Furthermore, if {Xn} is exchangeable, then the distribution of ⇥ is unique and
n�1

Pn
i=1 Xi ! ⇥ Pr-a.s.

Consider Example 1.52, p. 29.

The di�cult part of the proof is the “only if” direction. We have to show that
the desired ⇥ exists. The idea is to show that {Xn} exchangeable implies that the
limit limn n

�1
Pn

i=1 Xi exists, and use this limit as our ⇥. Thus, we need something
like a strong law of large numbers for exchangeable random variables. The general
way to find such a SLLN is to use martingale theory (se Theorem 1.62, p. 36). We
will use the more elementary version

Theorem 7 (c.f. Theorem 1.59, p. 34). Let {Xn} be exchangeable and real-valued.
Suppose E[X2

i ] = µ2 < 1 and E[XiXj ] = m2 < 1 for each i 6= j. Put Yn =
n�1

Pn
i=1 Xi. Then the subsequence {Y8n} converges Pr-a.s.

This more elementary version only gives us convergence along a subsequence,
but it will be su�cient for our purpose. For those not afraid of martingale theory
the general SLLN (Theorem 1.62 in the book) is very nice.

Proof. The way to prove that the subsequence converges is to show that it is almost
surely a Cauchy sequence. By Chebychev’s inequality we have for m > n

Pr(|Ym � Yn| � c)  c�2E[(Ym � Yn)
2]

= c�2(E[Y 2
m] + E[Y 2

n ]� 2E[YmYn])

= c�2(m�2[mµ2 +m(m� 1)m2] + n�2[nµ2 + n(n� 1)m2]

� 2m�1n�1[nµ2 + n(n� 1)m2 + n(m� n)m2])

= c�2(n�1 �m�1)(µ2 �m2)

< n�1c�2(µ2 �m2).

Consider now the subsequence Zk = Y8k and let Ak = {s : |Zk+1 � Zk| � 2�k}. If
we take c = 2�k we see that

Pr(Ak) = Pr(|Y8k+1 � Y8k | � 2�k) < 8�k22k(µ2 �m2) = 2�k(µ2 �m2).

Put A = {Ak i.o.} = \1
n=1[1

k=nAk. Then, by the first Borel-Cantelli lemma, since
Pr(Ak) is summable, Pr(A) = 0. We need only to show that for s 2 Ac {Zk(s)} is
a Cuachy sequence. Take " > 0. We have to show that for each s 2 Ac there is an
N",s such that |Zm(s)� Zn(s)| < " for m > n � N",s. Write Ac = [1

n=1 \1
k=n Ac

k.
Then, for each s 2 Ac there is a cs (depend on s) such that s 2 \1

k=cs
Ac

k. If
m > n � cs if follows that

|Zm(s)� Zn(s)| 
m
X

i=n

|Zi+1(s)� Zi(s)| < 2�n+1  2�cs+1.

Hence, we may take N",s > 1 + max{cs,� log2 "}. This completes the proof. ⇤

Proof of Theorem 6. First the “if” direction. If there is ⇥ such that {Xn} are IID
Ber(✓) given ⇥ = ✓ then {Xn} are exchangeable (as in Example 11). For the “only
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if” direction we use Theorem 7 to conclude that 8�nS8n converges Pr-a.s. Let
S0 ⇢ S be the set where the limit exists, Pr(S0) = 1. For s 2 S0 we let ⇥(s) be
the limit, and for s /2 S0 take ⇥(s) = 1/2. µ⇥ denotes the distribution of ⇥. The
important step is to prove

Pr(X1 = j1, . . . , Xk = jk,⇥ 2 C) =

Z

C

✓y(1� ✓)k�yµ⇥(d✓) (6.2)

for each k � 1, j1, . . . , jk 2 {0, 1} and Borel set C ⇢ [0, 1], where y = j1 + · · ·+ jk.
If this relation holds, then we see that X1, . . . , Xk are conditionally IID given
⇥ = ✓. To prove (6.2) we introduce Zn = IC(⇥)(8�nS8n)y(1 � 8�nS8n)k�y and
Z = IC(⇥)⇥y(1�⇥)k�y. Since n�1Sn ! ⇥ Pr-a.s. it follows that Zn ! Z Pr-a.s.
By the bounded convergence theorem E[Zn] ! E[Z]. Now we can identify E[Z] as
the RHS of (6.2). It remains to show that E[Zn] converges to the LHS of (6.2).
We write, with m = 8n,

Zn = IC(⇥)(m�1Sm)y(1�m�1Sm)k�y

= IC(⇥)m�k(
m
X

i=1

Xi)
y(

m
X

i=1

[1�Xi])
k�y

= IC(⇥)m�k
m
X

i1=1

· · ·
m
X

iy=1

Xi1 . . . Xiy

m
X

iy+1=1

· · ·
m
X

ik=1

(1�Xiy+1) . . . (1�Xik)

= IC(⇥)m�k
m
X

i1=1

· · ·
m
X

ik=1

Xi1 . . . Xiy (1�Xiy+1) . . . (1�Xk)

= IC(⇥)m�k
m
X

i1=1

· · ·
m
X

ik=1

I{j1}(Xi1) . . . I{jk}(Xik)

= IC(⇥)m�k
X

i1 6=··· 6=ik

I{j1}(Xi1) . . . I{jk}(Xik)

+ IC(⇥)m�k
X

at least two it equal

I{j1}(Xi1) . . . I{jk}(Xik).

For the first sum we have

E[IC(⇥)m�k
X

i1 6=··· 6=ik

I{j1}(Xi1) . . . I{jk}(Xik)]

= m�k
X

i1 6=··· 6=ik

E[IC(⇥)I{j1}(Xi1) . . . I{jk}(Xik)]

=
m!

mk(m� k)!
E[IC(⇥)I{j1}(Xi1) . . . I{jk}(Xik)]

=
m!

mk(m� k)!
Pr(⇥ 2 C,X1 = j1, . . . , Xk = jk)

! Pr(⇥ 2 C,X1 = j1, . . . , Xk = jk)

as m ! 1. In the last equality we used exchangeability. The second sum has
mk � m!/(m � k)! terms, each bounded between 0 and 1 and since m�k(mk �
m!/(m�k)! ! 0 the second sum converges to 0. This proves (6.2). To see that the
distribution of ⇥ is unique, suppose ⌫⇥ is a distribution that satisfies (6.2). Then,
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summing up over all j1, . . . , jk we see that

⌫⇥(C) =
1

X

j1=0

· · ·
1

X

jk=0

Z

C

✓y(1� ✓)k�y⌫⇥(d✓)

=
1

X

j1=0

· · ·
1

X

jk=0

Z

C

✓y(1� ✓)k�yµ⇥(d✓) = µ⇥(C),

for all Borel sets C ⇢ [0, 1]. Hence ⌫⇥ = µ⇥. To see that n�1Sn ! ⇥ Pr-a.s. we
can apply Proposition 1. Note that Theorem 7 is not enough because it only gives
convergence along a particular subsequence (alternatively we could apply Theorem
1.62 in the book). ⇤


