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Lecture 4

7. Sufficient statistics

Consider the “usual” statistical setup: the data is X and the paramter is ⇥.
To gain information about the parameter we study various functions of the data

X. For instance, if X = (X1, . . . , Xn) are IID Ber(✓) given ⇥ = ✓, then we would
use T (X) = n�1(X1+· · ·+Xn) to get information about the parameter. A function
of the data is called a statistic.

Definition 7. Let (T , C) be a measurable space such that the �-field C contains
all singletons. A measurable mapping T : X ! T is called a statistic.

As usual we think of a measurable space as a subspace of Rd
and the �-field as the

corresponding sub-�-field.

Although, formally a statistic is a mapping from the sample space X to some
space T , we can also think of the composition T �X : S ! T (recall that S is the
underlying probability space). This is a random variable taking values in T and we
often write T for this random quantity.

In the next sections we will look more closely at di↵erent classes of statistics.
That is, functions of the data with certain interesting properties. The first such
class is the class of su�cient statistics.

7.1. Su�cient statistics (classical). The idea of su�ciency is to find a function
T of the data X that summarizes the information about the parameter ⇥. Above
we mentioned the example of IID Ber(✓) random variables, X1, . . . , Xn, where we
know that we only need to know a function of the data, for instance X1+ · · ·+Xn,
in order to compute an estimate of ✓. Similarly, we argued for the betting problem
that decisions can be based entirely of knowing X1 + · · · + Xn and not all the
individual Xi’s.

Elementary case: Let us first see what su�cient statistics is when we have
densities. Suppose that the (conditional) distribution of X and T = T (X) given
⇥ = ✓ both have densities w.r.t. a measure ⌫ (think Lebesgue measure or counting
measure). Then we say that T is a su�cient statistic for ⇥ if fX|T,⇥(x | t, ✓) does
not depend on ✓.

Note that, with t = T (x),

fX|T,⇥(x | t, ✓) =
fX,T |⇥(x, t | ✓)
fT |⇥(t | ✓)

=
fX|⇥(x | ✓)
fT |⇥(t | ✓)

.

Hence T is su�cient if this ratio does not depend on ✓.
To see how T captures the “information” about ⇥ we can write down the likeli-

hood function as

fX|⇥(x | ✓) = fX|T,⇥(x | T (x), ✓)fT |⇥(T (x) | ✓)

If T is su�cient, then the first factor on the RHS does not depend on ✓ and
the likelihood when observing X = x is proportional (as a function of ✓) to the
likelihood when observing T = T (x). That is, information about ⇥ comes only
through the function T . If we, for example, want to maximize the likelihood we
could maximize fT |⇥(t | ✓) instead of maximizing fX|⇥(x | ✓). In this sense, there
is no need to know x itself, it is su�cient to know t = T (x) to do inference.
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General case: Formally, su�cient statistics are introduced as follows. First let
µT |⇥(· | ✓) be the conditional distribution of T given ⇥ = ✓. It is a probability
measure on C given by µT |⇥(C | ✓) = µX|⇥(T

�1C | ✓).

Definition 8. Suppose there exist versions of µX|⇥,T (· | ✓, t) and a function r :
B ⇥ T ! [0, 1] such that
(i) r(·, t) is a probability on B for each t 2 T ,
(ii) r(B, ·) is measurable T for each B 2 B,
and for each ✓ 2 ⌦ and B 2 B

µX|⇥,T (B | ✓, t) = r(B, t), for µT |⇥(· | ✓)� a.e. t.

Then T is called a su�cient statistic for ⇥ (in the classical sense).

Note that the function r satisfies the conditions of a conditional distribution
and does not depend on ✓. Hence, T is su�cient if µX|⇥,T (· | ✓, t) is a conditional
distribution that does not depend on ✓.

The simplest example (but not particularly useful) of a su�cient statistic is the
data itself. That is T = X and T (x) = x. Of course, µX|⇥,X(B | ✓, x) = IB(x) does
not depend on ✓ so the statistic is su�cient. Using this statistic does not help you
to summarize information about the parameter as it is as complicated as the data
itself. Let’s look at some simple cases where there exist simple su�cient statistics.

Example 13 (c.f. Example 6.2.3 in Casella & Berger). Let {Xn} be IID Ber(✓)
given ⇥ = ✓ and X = (X1, . . . , Xn). Put T (x) = x1 + · · · + xn. Let us show T
is su�cient. Note that T (X) is Bin(n, ✓) given ⇥ = ✓. For each x = (x1, . . . , xn)
xi 2 {0, 1} such that t = T (x)

fX|⇥,T (x | ✓, t) =
fX,T |⇥(x, t)

fT |⇥(t | ✓)
=

✓t(1� ✓)n�t

�

n
t

�

✓t(1� ✓)n�t
=

✓

n

t

◆�1

.

Since this does not depend on ✓, T is a su�cient statistic.

Example 14. Let {Xn} be IID Exp(✓) given ⇥ = ✓ and X = (X1, . . . , Xn). Put
T (x) = x1 + · · ·+ xn. Let us show T is su�cient. Note that T (X) is �(n, ✓) given
⇥ = ✓. For each xi > 0 we have with t = T (x)

fX|⇥(x | ✓)
fT |⇥(t | ✓)

=

Qn
i=1 ✓e

�✓xi

✓n

�(n) t
n�1e�✓t

=
(n� 1)!

tn�1
,

which does not depend on ✓.

7.2. Su�cient statistics (Bayesian). In Bayesian statistics there is a slightly
di↵erent notion of su�ciency, but it often coincides with the classical notion.

Definition 9. A statistic T is called a su�cient statistic for the parameter ⇥
(in the Bayesian sense) if, for every prior µ⇥, there exist versions of the posterior
distributions µ⇥|X and µ⇥|T such that, for every A 2 ⌧ , µ⇥|X(B | x) = µ⇥|T (B |
T (x)), µX -a.s., where µX is the marginal distribution of X.

Hence, no matter what prior one uses, one only has to consider the su�cient
statistic for making inference, becuase the posterior distribution given T = T (x) is
the same as the posterior given the data X = x.
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Let’s see how this looks like with densities. If both µ⇥|X(· | x) and µ⇥|T (· | t)
have densities w.r.t. the prior µ⇥ then

µ⇥|X(A | x) =
Z

A

f⇥|X(✓ | x)µ⇥(d✓),

µ⇥|T (A | t) =
Z

A

f⇥|T (✓ | t)µ⇥(d✓),

holds for any A 2 ⌧ and hence T is su�cient if and only if f⇥|X(✓ | x) = f⇥|T (✓ |
T (x)) µX -a.s.

One way to check that T is su�cient in the Bayesian sense is to check that
µ⇥|X(A | ·) is a function of T (x). We have the following result.

Lemma 2. Let T be a statistic and BT the sub-�-field of B generated by T . T is
su�cient in the Bayesian sense if and only if, for every prior µ⇥, there exists a
version of µ⇥|X such that for each A 2 ⌧ , µ⇥|X(A | ·) is measurable BT (In other
words, it is a function of T (x)).

Proof. ’only if’ part: If T su�cient in the Bayesian sense then for every prior and
each A 2 ⌧ , µ⇥|X(A | x) = µ⇥|T (A | T (x)) holds µX -a.e. Since µ⇥|T (A | T (·)) is
measurable BT it follows that so is µ⇥|X(A | ·).

’if’ part: Suppose that for every prior and each A 2 ⌧ , µ⇥|X(A | ·) is measurable
BT . We want to show T su�cient in Bayesian sense. That is, that µ⇥|X(A | x) =
µ⇥|T (A | T (x)) µX -a.s. We use the fact (e.g. Schervish, Proposition A.49 (4) p. 588)
that for two functions functions f and g that are measurable w.r.t. a �-field F and
a measure µ

Z

B

fdµ =

Z

B

gdµ for each B 2 F implies f(x) = g(x), µ� a.e.

Hence, in our case it is su�cient to show that for each B 2 BT
Z

B

µ⇥|X(A | x)µX(dx) =

Z

B

µ⇥|T (A | T (x))µX(dx).

The LHS is Pr(⇥ 2 A,X 2 B). Since B 2 BT there is a set C 2 C such that
B = T�1C. The RHS becomes

Z

B

µ⇥|T (A | T (x))µX(dx) = {change of variables}

=

Z

C

µ⇥|T (A | t)µT (dt)

= Pr(⇥ 2 A, T (X) 2 C)

= Pr(⇥ 2 A,X 2 B).

Hence, we have the desired equality and the proof is complete. ⇤

Example 15. Let {Xn} be conditionally IID Exp(✓) given ⇥ = ✓ and X =
(X1, . . . , Xn). Put T (x) = x1+ · · ·+xn. Let us show T is su�cient in the Bayesian
sense. Let µ⇥ be the prior (which is arbitrary). Then the posterior distribution
has density (Bayes theorem)

f⇥|X(✓ | x) =
Qn

i=1 ✓e
�✓xi

R

Qn
i=1  e

� xiµ⇥(d )
=

✓e�✓
Pn

i=1 xi

R

 ne� 
Pn

i=1 xiµ⇥(d )
= .
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Since T (X) is �(n, ✓) given ⇥ = ✓ it follows that

f⇥|T (✓ | t) =
✓n

�(n) t
n�1e�✓t

R

 n

�(n) t
n�1e� tµ⇥(d )

=
✓ne�✓t

R

 ne� tµ⇥(d )
.

Hence f⇥|X(✓ | x) = f⇥|T (✓ | T (x)) so T is su�cient in the Bayesian sense.

It is satisfying to know that in most situations one may encounter the classical
and Bayesian notion of su�ciency are the same.

Theorem 8. Let (T , C) be a measurable space and T a statistic. Suppose there
exists a �-finite measure ⌫ such that µX|⇥(· | ✓) ⌧ ⌫ for all ✓ 2 ⌦. Then T is
su�cient in the classical sense if and only if it is su�cient in the Bayesian sense.

Density proof. Suppose all relevant densities exists.
Let µ⇥ be an arbitrary prior. If T su�cient in the classical sense, then fX|⇥,T (x |

✓, t) = fX|T (x | t). Hence the posterior density is (with t = T (x))

dµ⇥|X

dµ⇥
(✓ | x) =

fX|⇥(x | ✓)
R

⌦ fX|⇥(x | ✓)µ⇥(d✓)

=
fX|⇥,T (x | ✓, t)fT |⇥(t | ✓)

R

⌦ fX|⇥,T (x | ✓, t)fT |⇥(t | ✓)µ⇥(d✓)

=
fX|T (x | t)fT |⇥(t | ✓)

R

⌦ fX|T (x | t)fT |⇥(t | ✓)µ⇥(d✓)

=
fT |⇥(t | ✓)

R

⌦ fT |⇥(t | ✓)µ⇥(d✓)

=
dµ⇥|T

dµ⇥
(✓ | t).

For the converse suppose that T is su�cient in the Bayesian sense so that
dµ⇥|X
dµ⇥

(✓ |
x) =

dµ⇥|T
dµ⇥

(✓ | T (x)). Then, with t = T (x) we have

fX|T,⇥(x | t, ✓) =
fX|⇥(x | ✓)
fT |⇥(t | ✓)

=

dµ⇥|X
dµ⇥

(✓ | x)
R

⌦ fX|⇥(x | ✓)µ⇥(d✓)
dµ⇥|T
dµ⇥

(✓ | t)
R

⌦ fT |⇥(t | ✓)µ⇥(d✓)

=
fX(x)

fT (t)

which does not depend on ✓. Hence, T is su�cient in the classical sense. ⇤

7.3. How to find a su�cient statistic? Suppose someone hands you a para-
metric family P0 = {fX|⇥(· | ✓), ✓ 2 ⌦} of densities w.r.t. a measure ⌫. How do
you come up with a su�cient statistic T? Further, if you have come up with a
suggestion of a statistic T , how do you check if it is a su�cient statistic? The next
theorem gives the answer.

Theorem 9 (Factorization Theorem, c.f. Theorem 6.2.6 in Casella & Berger).
Suppose P0 = {P✓ : ✓ 2 ⌦} is a parametric family and there exists a �-finite ⌫ such
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that P✓ ⌧ ⌫ for all ✓ 2 ⌦ with dP✓/d⌫(x) = fX|⇥(x | ✓). Then T (X) is su�cient
for ⇥ (in either sense) if and only if there exist functions h and g such that

fX|⇥ = h(x)g(✓, T (x)).

Density proof. Supposing all the relevant densities exist.

It is su�cient to check the equivalence in the Bayesian sense. If fX|⇥(x | ✓) =
h(x)g(✓, T (x)), the by Bayes’ theorem

dµ⇥|X

dµ⇥
(✓ | x) =

fX|⇥(x | ✓)
R

⌦ fX|⇥(x | ✓)µ⇥(d✓)

=
h(x)g(✓, T (x))

R

⌦ h(x)g(✓, T (x))µ⇥(d✓)

=
g(✓, T (x))

R

⌦ g(✓, T (x))µ⇥(d✓)
,

which is a function of T (x). Hence it is su�cient in the Bayesian sense (and also
in the classical sense). Conversely, suppose T (X) is su�cient in the Bayesian sense
so that f⇥|X(✓ | x) = f⇥|T (✓ | T (x)). Then

fX|⇥(x | ✓) = f⇥|X(✓ | x)fX(x) = fX(x)
| {z }

h(x)

f⇥|T (✓|T (x))
| {z }

g(✓,T (x))

⇤

Example 16 (Exponential families). If we put T (X) = (t1(X), . . . , tk(X)) then
by the factorization theorem it follows that T (X) is su�cient. Indeed,

fX|⇥(x | ✓) = h(x)
|{z}

h(x)

c(✓) exp{
k

X

i=1

✓iti(x)}
| {z }

g(✓,T (x))

.

Hence, a su�cient statistic always exists. We can compute the density of the
su�cient statistics.

8. A first glance at decision theory

Many statistical problems can be phrased in the language of decision theory.
Suppose as usual that we have data X whose distribution depend on a parameter
⇥. Based on observing X = x we want to take some action. Let @ be a set of possi-
ble actions. On @ we take a �-field ↵. The result of our action depend of course on
the chosen action, but also on the parameter ⇥. We say that every action induces
a loss. A loss function is a function L : ⌦ ⇥ @ ! R. We interpret L(✓, a) as the
incurred loss if we took action a and ⇥ = ✓.

One could let the loss depend on some other unobserved quantity V but we will not need

this higher generality right now.

Definition 10. A deterministic decision rule is a measurable function � from X to
@. We interpret �(x) as the action to take if we observe X = x.

A randomized decision rule is a mapping from X to a probability measure on
(@,↵) such that x 7! �(A;x) is measurable for each A 2 ↵.
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We think of executing a randomized decision rule as follows. Given X = x we
“throw a coin” according to �(· ;x). This gives us an action a 2 @ which is the
decision we take. A deterministic decision rule can be thought of as a special case
of a randomized decision rule where all the probability mass is placed at a single
action. In this case the action �(x) is identified with the probability measure on @
given by �(A;x) = IA(�(x)).

If � is a deterministic rule, then we associate the loss L(✓, �(x)). If � is a ran-
domized decision rule we associate the loss L(✓, �(·;x)) =

R

@ L(✓, a)�(da;x). That
is, the average loss when we draw the action from �(·;x).

In the Bayesian case, one introduces the posterior risk function

r(� | x) =
Z

⌦
L(✓, �(x))µ⇥|X(d✓ | x).

That is, the average loss for decision rule � given the observation X = x. One
would like to find a decision rule that minimizes the posterior risk simulatenously
for all x 2 X .

Definition 11. If �0 is a decision rule such that for all x, r(�0 | x) < 1 and for all
x and all decision rules � r(�0 | x)  r(� | x), then �0 is called a formal Bayes rule.

If �0 is a decision rule and there exists a subset B ⇢ X such that for all x 2 B,
r(�0 | x) < 1 and for all x 2 B and all decision rules �, r(�0 | x)  r(� | x), then
�0 is called a partial Bayes rule.

In classical decision theory we condition on ⇥ = ✓ and introduce the risk function

R(✓, �) =

Z

X
L(✓, �(x))µX|⇥(dx | ✓).

That is, the conditional mean of the loss, given ⇥ = ✓. Here we would like to find
a rule � that minimizes the risk function simultaneously for all values of ✓.

8.1. A coin tossing example. Consider the following situation. You have an
amount of m dollars to bet on the outcome of a Bernoulli random variable Xn+1.
You observe X = (X1, . . . , Xn). Suppose X1, . . . , Xn+1 are conditionally iid Ber(✓)
random variables given ⇥ = ✓. Based on the observations in X you have to make a
decision whether to bet on Xn+1 = 0 or Xn+1 = 1. If you win, you win the amount
m and otherwise you lose m.

Formulate this as a Bayesian decision problem. Write down the sample space
X , the parameter space ⌦, and the action space @. Choose an appropriate prior
distribution and an appropriate loss function of your choice. Then find the best
decision rule, i.e. the decision rule � that minimizes the posterior risk simulatenously
for all x.

8.2. Su�cient statistics in decision theory. If T is a su�cient statistic we
would expect that we can base our decisions on T and do not need all the informa-
tion in X since T contains all information about the unknown parameter ⇥. In the
Bayesian setting we have the following theorem that supports this.

Theorem 10. If there is a formal Bayes rule and T is a su�cient statistics (in
the Bayesian sense) then there is a formal Bayes rule which is a function of T .
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Proof. Let � be a formal Bayes rule and take x 2 X . Since T is su�cient we have

r(� | x) =
Z

⌦
L(✓, �)µ⇥|X(d✓ | x) =

Z

⌦
L(✓, �)µ⇥|T (d✓ | T (x)).

We claim that for each y such that T (x) = T (y) it follows that r(� | x) = r(� | y).
If not, suppose without loss of generality that r(� | x) < r(� | y) for some y 2 X
with T (y) = T (x). Let �0 be a decision rule such that �0(z) = �(x) for all z such
that T (x) = T (z). Then it follows that

r(�0 | y) =
Z

⌦
L(✓, �0)µ⇥|X(d✓ | y)

=

Z

⌦
L(✓, �0)µ⇥|T (d✓ | T (y))

=

Z

⌦
L(✓, �)µ⇥|T (d✓ | T (x))

r(� | x) < r(� | y),

which contradicts that � is a formal Bayes rule. We conclude that the claim is true.
The decision rule �0 just defined is a function of T (x) and satisfies r(�0 | T (x)) =

r(� | x) for each x. Hence, it is a formal Bayes rule that is a function of T . ⇤

Note that (in the proof above) the formal Bayes rule � that we started with do
not have to be a function of T . For instance, it may be the case that T (x) = T (y),
�(x) 6= �(y), and L(✓, �(x)) = L(✓, �(y)) for each ✓. Then r(� | x) = r(� | y)
although, �(x) 6= �(y).

In the classical setting we have the following.

Theorem 11. If �0 is a (randomized) decision rule and T is su�cient statistic (in
classical sense), then there exists a decision rule �1 which is a function of T and
R(✓, �0) = R(✓, �1) for all ✓.

In the theorem, if �0 is deterministic we interpret it as the randomized rule �
by �(A;x) = IA(�0(x)). That is, the probability measure on (@,↵) that puts all its
mass on �0(x).

Proof. Let A 2 ↵ and take

�1(A;x) = E✓[�0(A;X) | T = t].

Since T is su�cient the expectation does not depend on ✓. We claim that for any
�0-integrable function h : @ ! R

E
h

Z

@
h(a)�0(da;X) | T = t

i

=

Z

@
h(a)�1(da; t).
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To see this, start with h as indicator, then simple function, and finally measurable
function. Then we see that

R(✓, �1) =

Z

X

Z

@
L(✓, a)�1(da;T (x))µX|⇥(dx | ✓)

=

Z

X
E
h

Z

@
L(✓, a)�0(da;X) | T = T (x)

i

µX|⇥(dx | ✓)

= E✓

h

E
h

Z

@
L(✓, a)�0(da;X) | T

ii

= E✓

h

Z

@
L(✓, a)�0(da;X)

i

=

Z

X

Z

@
L(✓, a)�0(da;x)µX|⇥(dx | ✓)

= R(✓, �0).

⇤
One should note that even if �0 is a deterministic rule, the resulting rule �1(A; t) =

E✓[�0(A;X) | T = t] may be randomized.
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Lecture 5

9. Minimal sufficient and complete statistics

We introduced the notion of su�cient statistics in order to have a function of
the data that contains all information about the parameter. However, a su�cient
statistic does not have to be any simpler than the data itself. As we have seen, the
identity function is a su�cient statistic so this choice does not simplify or summarize
anything. A statistic is said to be minimal su�cient if it is as simple as possible in
a certain sense. Here is a definition.

Definition 12. A su�cient statistic T : X ! T is minimal su�cient if for any
su�cient statistic U : X ! U there is a measurable function g : U ! T such that
T = g(U) µX|⇥(· | ✓)-a.s. for all ✓ 2 ⌦.

How do we check if a statistic T is minimal su�cient? It can be inconvenient to
check the condition in the definition for all su�cient statistics U .

Theorem 12. If there exist version of fX|⇥(x | ✓) for each ✓ and a measurable
function T : X ! T such that T (x) = T (y) , y 2 D(x), where

D(x) = {y 2 X : fX|⇥(y | ✓) = fX|⇥(x | ✓)h(x, y), 8✓ and some function h(x, y) > 0},
then T is a minimal su�cient statistic.

Example 17. Let {Xn} be IID Exp(✓) given ⇥ = ✓ and X = (X1, . . . , Xn). Put
T (x) = x1 + · · ·+ xn. Let us show T is minimal su�cient. The ratio

fX|⇥(x | ✓)
fX|⇥(y | ✓) =

✓ne�✓
Pn

i=1 xi

✓ne�✓
Pn

i=1 yi

does not depend on ✓ if and only if
Pn

i=1 xi =
Pn

i=1 yi. In this case h(x, y) = 1,
D(x) = {y :

Pn
i=1 xi =

Pn
i=1 yi}, and T is minimal su�cient.

Proof. Note first that the sets D(x) form a partition of X . Indeed, by putting
h(y, x) = 1/h(x, y) we see that y 2 D(x) implies x 2 D(y). Similarly, taking
h(x, x) = 1, we see that x 2 D(x) and hence, the di↵erent D(x) form a partition.
The condition says that the sets D(x) coincide with sets T�1{T (x)} and hence
D(x) 2 BT for each x. By Bayes theorem we have, for y 2 D(x),

dµ⇥|X

dµ⇥
(✓ | x) =

fX|⇥(x | ✓)
R

⌦ fX|⇥(x | ✓)µ⇥(d✓)
=

h(x, y)fX|⇥(y | ✓)
R

⌦ h(x, y)fX|⇥(y | ✓)µ⇥(d✓)
=

dµ⇥|X

dµ⇥
(✓ | y).

That is, the posterior density is constant on D(x). Hence, it is a function of T (x)
and by Lemma 1 T is su�cient.

Let us check that T is also minimal. Take U : X ! U to be a su�cient statistic.
If we show that U(x) = U(y) implies y 2 D(x), then it follows that U(x) = U(y)
implies T (x) = T (y) and hence that T is a function of U(x). Then T is minimal.
By the factorization theorem (Theorem 2, Lecture 6)

fX|⇥(x | ✓) = h(x)g(✓, U(x)).

We can assume that h(x) > 0 because P✓({x : h(x) = 0}) = 0. Hence, U(x) = U(y)
implies

fX|⇥(y | ✓) = h(y)

h(x)
g(✓, U(x)).

That is, y 2 D(x) with h(x, y) = h(y)/h(x). ⇤
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The next concept is that of a complete statistic.

Definition 13. Let T : X ! T be a statistic and {µT |⇥(· | ✓), ✓ 2 ⌦} the family
of conditional distributions of T (X) given ⇥ = ✓. The family {µT |⇥(· | ✓), ✓ 2 ⌦}
is said to be complete if for each measurable function g, E✓[g(T )] = 0, 8✓ implies
P✓(g(T ) = 0) = 1, 8✓.

The family {µT |⇥(· | ✓), ✓ 2 ⌦} is said to be boundedly complete if each bounded
measurable function g, E✓[g(T )] = 0, 8✓ implies P✓(g(T ) = 0) = 1, 8✓.

A statistic T is said to be complete if the family {µT |⇥(· | ✓), ✓ 2 ⌦} is complete.
A statistic T is said to be boundedly complete if the family {µT |⇥(· | ✓), ✓ 2 ⌦}

is boundedly complete.

One should note that completeness is a statement about the entire family {µT |⇥(· |
✓), ✓ 2 ⌦} and not only about the individual conditional distributions µT |⇥(· | ✓).

Example 18. Suppose that T has Bin(n, ✓) distribution with ✓ 2 (0, 1) and g is a
function such that E✓[g(T )] = 0 8✓. Then

0 = E✓[g(T )] =
n
X

k=0

g(k)

✓

n

k

◆

✓k(1� ✓)n�k = (1� ✓)n
n
X

k=0

g(k)

✓

n

k

◆

⇣ ✓

1� ✓

⌘k

.

If we put r = ✓/(1� ✓) we see that this equals

(1� ✓)n
n
X

k=0

g(k)

✓

n

k

◆

rk

which is a polynomial in r of degree n. Since this is constant equal to 0 for all r > 0
it must be that g(k)

�

n
k

�

= 0 for each k = 0, . . . , n, i.e. g(k) = 0 for each k = 0, . . . , n.
Since, for each ✓, T is supported on {0, . . . , n} it follows that P✓(g(T ) = 0) = 1 8✓
so T is complete.

An important result for exponential families is the following.

Theorem 13. If the natural parameter space ⌦ of an exponential family contains
an open set in Rk, then T (X) is a complete su�cient statistic.

Proof. We will give a proof for k = 1. For larger k one can use induction. We know
that the natural statistic T has a density c(✓)e✓t with respect to ⌫0T (see Section
4.2, Lecture 4). Let g be a measurable function such that E✓[g(T )] = 0 for all ✓.
That is,

Z

T
g(t)c(✓)e✓t⌫T (dt) = 0 8✓.

If we write g+ and g� for the positive and negative part of g, respectively, then
this says

Z

T
g+(t)c(✓)e✓t⌫T (dt) =

Z

T
g�(t)c(✓)e✓t⌫T (dt) 8✓. (9.1)

Take a fixed value ✓0 in the interior of ⌦. This is possible since ⌦ contains an open
set. Put

Z0 =

Z

T
g+(t)c(✓0)e

✓0t⌫T (dt) =

Z

T
g�(t)c(✓0)e

✓0t⌫T (dt)
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and define the probability measures P and Q by

P (C) = Z�1
0

Z

C

g+(t)c(✓0)e
✓0t⌫T (dt)

Q(C) = Z�1
0

Z

C

g�(t)c(✓0)e
✓0t⌫T (dt).

Then, the equality (9.1) can be written
Z

T
exp{t(✓ � ✓0)}P (dt) =

Z

T
exp{t(✓ � ✓0}Q(dt), 8✓.

With u = ✓ � ✓0 we see that this implies that the moment generating function of
P , MP (u), equals the mgf of Q, MQ(u) in a neighborhood of u = 0. Hence, by
uniqueness of the moment generating function P = Q. It follows that g+(t) = g�(t)
⌫0T -a.e. and hence that µT |⇥{t : g(t) = 0 | ✓} = 1 for all ✓. Hence, T is complete
su�cient statistic. ⇤

Completeness of a statistic is also related to minimal su�ciency.

Theorem 14 (Bahadur’s theorem). If T is a finite-dimensional boundedly complete
su�cient statistic, then it is minimal su�cient.

Proof. Let U be an arbitrary su�cient statistic. We will show that T is a function
of U by constructing the appropriate function. Put T = (T1(X), . . . , Tk(X)) and
Si(T ) = [1 + e�Ti ]�1 so that Si is bounded and bijective. Let

Xi(u) = E✓[Si(T ) | U = u],

Yi(t) = E✓[Xi(U) | T = t].

We want to show that Si(T ) = Xi(U) P✓-a.s. for all ✓. Then, since Si is bijective
we have Ti = S�1

i (Xi(U)) and the claim follows. We show Si(T ) = Xi(U) P✓-a.s.
in two steps.

First step: Si(T ) = Yi(T ) P✓-a.s. for all ✓. To see this note that

E✓[Yi(T )] = E✓[E✓[Xi(U) | T ]] = E✓[Xi(U)] = E✓[E✓[Si(T ) | U ]] = E✓[Si(T )].

Hence, for all ✓, E✓[Yi(T )�Si(T )] = 0 and since Si is bounded, so is Yi and bounded
completeness implies P✓(Si(T ) = Yi(T )) = 1 for all ✓.

Second step: Xi(U) = Yi(T ) P✓-a.s. for all ✓. By step one we have E✓[Yi(T ) |
U ] = Xi(U) P✓-a.s. So if we show that the conditional variance of Yi(T ) given U
is zero we are done. That is, we need to show Var✓(Yi(T ) | U) = 0 P✓-a.s. By the
usual rule for conditional variance (Theorem B.78 p. 634)

Var✓(Yi(T )) = E✓[Var✓(Yi(T ) | U)] + Var✓(Xi(U))

= E✓[Var✓(Yi(T ) | U)] + E✓[Var✓(Xi(U) | T )] + Var✓(Si(T )).

By step one Var✓(Yi(T )) = Var✓(Si(T )) and E✓[Var✓(Xi(U) | T )] = 0 since Xi(U)
is known if T is known. Combining this we see that Var✓(Yi(T ) | U) = 0 P✓-a.s. as
we wanted. ⇤

10. Ancillary statistics

As we have seen a su�cient statistic contains all the information about the
parameter. The opposite is when a statistic does not contain any information
about the parameter.
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Definition 14. A statistic U : X ! U is called ancillary if the conditional distri-
bution of U given ⇥ = ✓ is the same for all ✓.

Example 19. Let X1 and X2 be conditionally independent N(✓, 1) distributed
given ⇥ = ✓. Then U = X2 �X1 is ancillary. Indeed, U has N(0, 2) distribution,
which does not depend on ✓.

Sometimes a statistic contains a coordinate that is ancillary.

Definition 15. If T = (T1, T2) is a su�cient statistic and T2 is ancillary, then T1

is called conditionally su�cient given T2.

Example 20. Let X = (X1, . . . , Xn) be conditionally IID U(✓�1/2, ✓+1/2) given
⇥ = ✓. Then

fX|⇥(x | ✓) =
n
Y

i=1

I[✓�1/2,✓+1/2](xi) = I[✓�1/2,1)(minxi)I(�1,✓+1/2](maxxi).

T = (T1, T2) = (maxXi,maxXi �minXi) is minimal su�cient and T2 is ancillary.
Note that fX|✓(y | ✓) = fX|✓(x | ✓) , maxxi = max yi and minxi = min yi
, T (x) = T (y). Hence, by Theorem 12 Lecture 7, T is minimal su�cient. The
conditional density of (T1, T2) given ⇥ = ✓ can be computed as (do this as an
exercise)

fT1,T2|⇥(t1, t2 | ✓) = n(n� 1)tn�2
2 I[0,1](t2)I[✓�1/2+t2,✓+1/2](t1)

In particular, the marginal density of T2 is

fT2|⇥(t2 | ✓) = n(n� 1)tn�2
2 (1� t2)

and this does not depend on ✓. Hence T2 is ancillary.
Note that the conditional distribution of T1 given T2 = t2 and ⇥ = ✓ is

fT1|T2,⇥(t1 | t2, ✓) =
1

(1� t2)
I[✓�1/2+t2,✓+1/2](t1).

That is, it is U(✓ � 1/2 + t2, ✓ + 1/2). Hence, this distribution becomes more
concentrated as t2 becomes large. Although T2 does not tell us something about
the parameter, it tells us something about the conditional distribution of T1 given
⇥.

The usual “rule” in classical statistics is to (whenever it is possible) perform
inference conditional on an ancillary statistic.

In our example we can exemplify it.

Example 21 (continued). Consider the above example with n = 2 and consider
finding a 50% confidence interval for ⇥. The naive way to do it is to consider the
interval I1 = [minXi,maxXi] = [T1 � T2, T1]. This interval satisfies P✓(⇥ 2 I1) =
1/2 since there is probability 1/4 that both observations are above ✓ and probability
1/4 that both are below ✓.
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If one performs the inference conditional on the ancillary T2 we get a very dif-
ferent result. We can compute

P✓(T1 � T2  ⇥  T1 | T2) = P✓(⇥  T1  ⇥+ T2 | T2 = t2)

=
1

1� t2

Z ✓+t2

✓

I[✓�1/2+t2,✓+1/2](t1)dt1

=
t2

1� t2
I[0,1/2)(t2).

Hence, the level of confidence depends on t2. In particular, we can construct an
interval I2 = [T1 � 1/4(1 + T2), T1 + 1/4� 3T2/4] which has the property

P✓(⇥ 2 I2 | T2 = t2) = 1/2.

Indeed,

P✓(⇥ 2 I2 | T2 = t2) = P✓(⇥� 1/4 + 3T2/4  T1  ⇥+ 1/4(1 + T2) | T2 = t2)

=

Z ✓+(1+t2)/4

✓�1/4+3t2/4
I[✓�1/2+t2,✓+1/2](t1)dt1 = 1/2.

Since this probability does not depend on t2 it follows that

P✓(⇥ 2 I2) = 1/2.

Let us compare the properties of I1 and I2. Suppose we observe T2 small. This
does not give us much information about ⇥ and this is reflected in I2 being wide.
On the contrary, I1 is very small which is counterintuitive. Similarly, if we observe
T2 large, then we know more about ⇥ and I2 is short. However, this time I1 is
wide!

Suppose T is su�cient and U is ancillary and they are conditionally independent
given ⇥ = ✓. Then there is no benefit of conditioning on U . Indeed, in this case

fT |U,⇥(t | u, ✓) = fT |⇥(t | ✓)

so conditioning on U does not change anything. This situation appear when there
is a boundedly complete su�cient statistic.

Theorem 15 (Basu’s theorem). If T is boundedly complete su�cient statistic and
U is ancillary, then T and U are conditionally independent given ⇥ = ✓. Further-
more, for every prior µ⇥ they are independent (unconditionally).

Proof. For the first claim (to show conditional independence) we want to show that
for each measurable set A ⇢ U

µU |⇥(A) = µU |T,⇥(A | t, ✓) µT |⇥(· | ✓)� a.e. t, 8✓. (10.1)

Since U is ancillary µU |⇥(A | ✓) = µU (A), 8✓. We also have

µU |⇥(A | ✓) =
Z

T
µU |T,⇥(A | t, ✓)µT |⇥(dt | ✓) =

Z

T
µU |T (A | t)µT |⇥(dt | ✓),

where the second equality follows since T is su�cient. Indeed, µX|T,⇥(B | t, ✓) =
µX|T (B | t) and since U = U(X)

µU |T,⇥(A | t, ✓) = µX|T,⇥(U
�1A | t, ✓) = µX|T (U

�1A | t) = µU |T (A | t).



34 HENRIK HULT

Combining these two we get
Z

T
[µU (A)� µU |T (A | t)]µT |⇥(dt | ✓) = 0.

By considering the integrand as a function g(t) we see that the above equation is
the same as E✓[g(T )] = 0 for each ✓ and since T is boundedly complete µT |⇥({t :
g(t) = 0} | ✓) = 1 for all ✓. That is (10.1) holds.

For the second claim we have by conditional independence that

µU,T (A⇥B) =

Z

⌦

Z

B

µU |T (A | t)µT |⇥(dt | ✓)µ⇥(d✓)

=

Z

⌦
µU (A)µT |⇥(B | ✓)µ⇥(d✓)

= µU (A)µT (B)

so T and U are independent. ⇤
Sometimes a combination of the recent results are useful for computing expected

values in an unusual way:

Example 22. Let X = (X1, . . . , Xn) be conditionally IID Exp(✓) given ⇥ = ✓.
Consider computing the expected value of

g(X) =
Xn

X1 + · · ·+Xn
.

To do this, note that g(X) is an ancillary statistic. Indeed, if Z = (Z1, . . . , Zn) are
IID Exp(1) then X d= ✓�1Z and we see that

P✓(g(X)  x) = P✓

⇣ 1

x
<

X1

Xn
+ · · ·+ Xn�1

Xn
+ 1

⌘

= P✓

⇣ 1

x
<

Z1

Zn
+ · · ·+ Zn�1

Zn
+ 1

⌘

Since the distribution of Z does not depend on ✓ we see that g(X) is ancillary.
The natural statistic T (X) = X1 + · · · + Xn is complete (by the Theorem just
proved) and minimal su�cient. By Basu’s theorem (Theorem 15) T (X) and g(X)
are independent. Hence,

✓ = E✓[Xn] = E✓[T (X)g(X)] = E✓[T (X)]E✓[g(X)] = n✓E✓[g(X)]

and we see that E✓[g(X)] = n�1.


