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LECTURE 6

11. DECISION THEORY

Recall from Section 8 that for a decision rule § and observation X = x we have
(in Bayesian setting) the posterior risk

"6 | z) = / L0, 5(x))oyx (6| 2),

where L(0,0(x)) = [, L(0,a)d(da; z) if 6 is a randomized rule. If &y is a decision
rule such that for all z, r(dp | ) < oo and for all x and all decision rules &
r(do | ) < r(d | x), then dy is called a formal Bayes rule.

There is also a weaker concept than a formal Bayes rule. Denote by pg the
prior distribution of ©. Together with fx|e this specifies the predictive (marginal)
distribution of X, ux. We call the function

r(i0,6) = /X r(8 | 2)pux (dx)

the Bayes risk and each § that minimizes the Bayes risk is called a Bayes rule with
respect to pe, assuming r(n,d) < oo. The Bayes risk is the mean of the posterior
risk, before observing X = .

11.1. Classical decision theory. In classical decision theory we condition on
O = 0 and introduce the risk function

R(6,6) = /X L(9,5(x))xo(dz | 0).

That is, the conditional mean of the loss, given ©® = . Here we would like to find
a rule ¢ that minimizes the risk function simultaneously for all values of 6. As we
saw in the last lecture there may not be a rule that minimizes the risk function
simultaneously for all §. Therefore we introduce the notion of admissible rules.

Definition 16. Let § be a decision rule. If there exists a decision rule d; such
that R(0,d1) < R(6,6) for all § with strict inequality for some 6, then we say § is
in-admissible and it is dominated by ;. Otherwise, § is admissible.

Of course, one should not use in-admissible decision rules.
As a weaker criterion one can, as in the Bayesian setting, take a prior distribution
e for ©® and try to minimize

| Bi6.0)no(d0).
Q

Note that by Fubini’s theorem we have
| ro.5metan) = [ [ L6.5@)xiolds | One(d)
— [ [ 2050 | Dyux ()
X JQ
= [ #(6 1 Dhux(an) = r(0.5)
X

which is the Bayes risk with respect to pe.
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Minimax rules. For a given problem there might be many admissible decision
rules, but we may not be able to find one which dominates all the others. In that
case we need a criteria to decide which rule to take. We have already seen the
possibility of choosing a Bayes rule with respect a some prior distribution 7. A
different criteria is the following.

Definition 17. A decision rule §g is called minimaz if

sup R(0,dp) < infsup R(6,9).
0€Q 5 9eQ

That is, a minimax has the smallest upper bound of the risk function. That is,
we prepare for the worst possible # and choose the rule which has the smallest risk
for this worst 6. One could ask how minimax rules are connected to Bayes rules. If
A is a prior for © we have

r(\, 6) = /Q R0, 5)M\(d6).

Hence, if X puts all its mass on those 6 that maximizes R(6, ) we see that

sup (A, d) = sup R(6,0).
A 0

This choice of A depends on the decision rule §.

Definition 18. A prior distribution Ag for © is least favorable if infsr(Ng,0) =
supy infs (A, 9).

That is, Ao is a prior such that the corresponding Bayes rule has the highest
possible risk.
For any fixed prior A\¢ and decision rule §; we have

ilgfr(/\o,é) < r(Xo,00) < supr(A,dyp).
A

Therefore we can introduce the following concept.
Definition 19. Let
V_ =supinfr(A,d) <infsupr(A,d) =infsup R(0,6) =V .
PR o 5 9
Then V_ is the maximin value of the decision problem and V ~ is the minimazx value
of the decision problem.
How can we check that a rule is minimax and a prior least favorable?

Theorem 16. If 6y is a Bayes rule with respect to Ao and R(0,00) < (Ao, do) for
all 8, then &g is minimazx and g is least favorable.

Proof. Since

V= <sup R(0,60) < r(Xo,dp) = irgf r(Ag,0) < V_
0

and V_ <V~ it must be that V_ = V'~ and the claim follows. O

The theorem gives you a condition to check but when can we actually find
minimax rules. We will consider the case where ) is finite, Q = {6y,...,0r}. In
that case the risk function R(6,§) for a given decision rule ¢ is just a vector in R¥.
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Definition 20. Suppose Q = {61,...,0;}, let
R={z€cR":z =R(6;,05),i=1,...,k, for some decision rule §}.
The set R is called the risk set. For any C C RF the lower boundary is the set
{zeC7:x;<z,i=1...,kand x; < z; for some ¢ implies x ¢ C~}.

The lower boundary of the risk set is denoted OL. The risk set is closed from below
if OL C R.

Lemma 3. The risk set is convez.

Proof. For i =1,2let z; € R be points that correspond to the decision rules §; and
take A € [0,1]. Then Az; + (1 — )22 is the risk function of the randomized decision
rule corresponding to taking ¢; with probability A and do with probability 1 — A.
Hence, it belongs to the risk set R. O

Consider Example 3.72, p. 170 in Schervish “Theory of statistics”.

Theorem 17 (Minimax theorem). Suppose the loss function is bounded from below
and Q) is finite. Then sup, infs r(A,d) = infs supy R(6,0) and a least favorable prior
Ao exists. If R is closed from below, then there exists a minimaz rule that is a Bayes
rule with respect to Ag.

Proof. For any real number s let A, = {z € RF: z; <s,i=1,...,k}. That is, A,
is an orthant. It is closed and convex for each s. Take sp = inf{s : A, N R # 0}.
Then

so = inf sup R(0, 9).
L)

Indeed, for each z € A, N R there is a decision rule ¢ such that supy R(6,9) =
max; R(0;,9) < s. Taking inf over s corresponds exactly to taking inf over J. Next
note that the interior of Ay, is convex and does not intersect R. The separating
hyperplane theorem says that there exists a vector v and a real number ¢ such that
vl'z > cfor each 2 € R and vTz < ¢ for each z in the interior of A,,. It is necessary
that each coordinate of v satisfies v; > 0. Otherwise, if v; < 0 we can find a
sequence T, in the interior of A,, with lim,, ,; = —oo and all other z,; = sg — ¢
and then lim, vTx, = 0o > ¢, which is a contradiction. If we put \o; = v;/ Zle vj
we get a probability measure on £ which is least favorable. Indeed, since (s, - .., so)
is in the closure of the interior of Ay, it follows that ¢ > sq Z?:l v; and we have
c
k
j=1

inf r(\o,d) = inf A\lz > > so = inf sup R(0, J)
§ zER vj 6 9
This shows that A\ is least favorable.
We were not able to cover the proof that there exists a minimax rule. We refer

to the book (Schervish, p.173). O

11.2. On finding a formal Bayes rule. In Bayesian decision theory the following
is a good way to find a deterministic formal Bayes rule.

(1) Take z € X.

(2) Find a € XN that minimizes [, L(0, a)pe|x (df | z).

(3) Put 6(x) = a.

(4) Repeat for all z.
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However, it is not always that a formal Bayes rule exists, for instance the mini-
mum in step (2) may not exist in N. Here is an example

Example 23. Let X ~ N(6,1) and © ~ N(0, 1) where 2 = R. Then the posterior
is N(x/2,1/2). Let the action space be X = R and the loss function L(6,a) = 0 if
a>0,L(0,a) =1if a < 0. That is, a loss occurs if our guess of 6 is below §. Then
for any x

/QL(G,G)MG\X(CZQ |2) = pe|x(©>alz)=1 —@(al;\xff),

This converges to 0 as a — 0o, so the risk is minimized at a = co but this is not in
the action space N. For this example no formal Bayes rule exists.

12. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

Definition 21. A class C of decision rules is complete if for every § ¢ C there exists
0o € C that dominates ¢, i.e. R(6,d0) < R(0,0) V8 with strict inequality for some 6.
A class in minimal complete if no proper subclass is also complete.

To see the relation to admissible decision rules, we have the following:

Lemma 4. A minimal complete class consists exactly of the admissible decision
rules.

Proof. First we show that § admissible implies § € C. Indeed, if § ¢ C then there
exists dg € C that dominates § which contradicts that ¢ is admissible.

For the other inclusion we need to show that § € C implies § is admissible.
Suppose it is not admissible. Then exists a dominating rule é;. Either §; € C or
01 ¢ C. In the first case put do = 01. In the second, there is d; € C that dominates
01. Thus, in both cases 2 € C dominates §. If §’ is a rule that is dominated by
d, then it is also dominated by d. This implies that C \ {0} is complete. This
is a contradiction because we assumed that C is minimal complete. Hence, § is
admissible. O

There is one, simple case, where a minimal complete class can be found. This is
called the Neyman-Pearson fundamental lemma.

Theorem 18. Let Q = X = {0,1}, L(0,0) = L(1,1) = 0, L(1,0) = k; > 0, and
L(0,1) = ko > 0. Let fi(x) = dP;/dv where v is Py + Py. For §, a decision rule,
let p(x) = d({1};z) be the test function of 6. Let C be the class of rules with test
functions of the form below:

For each k € (0,00) and each function v : X — [0,1],

1,  filz) > kfo(x),
Prq(z) =14 (@), fi(z)=kfo(z),
0, fl (x) < k‘fo(.l?)
For k=0,

For k = oo,
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Then C is a minimal complete class.

Before we prove the result let us see what the decision rules are. The decision
rules are asssociated with a threshold & € [0, oo].

e To k = 0 there corresponds one decision rule which says “choose a = 1 if
fi(xz) > 0 and a = 0 otherwise”.

e To k = oo there corresponds one decision rule which says “choose a = 1 if
fo(x) =0 and a = 0 otherwise”.

e To each k € (0,00) there are lots of decision rules. They all say that a =1
should be chosen if it is sufficiently likely that # = 1. That is: “choose
a=11if fi(x) > kfo(x), choose a = 0 if fi(x) < kfo(x), and in the event
that we cannot decide fi(z) = kfo(x) we choose a = 1 with probability
~(z) where v is some function v : X — [0,1]”.

Example 24. The Neyman-Pearson lemma can be used when deciding between
competing models. Suppose we have two competing models for the distribution
of X given by continuous densities fo and f; w.r.t. Lebesgue measure. Based on
observing X = x we have to decide which is the more appropriate one. Decisions
are ¢ = 1 “f7 is correct density” and a = 0 “fy is correct”. The Neyman-Pearson
lemma says that the admissible rules (the minimal complete class) are of the form:
for k € (0,00) choose a = 1if fi(x) > kfi(z) and a = 0 if fi(x) < kfo(z). There is
no need to specify the case fi(x) = kfo(z) since this even has probability zero. Also
the cases k = 0 or oo corresponds to “always choose a = 1”7 and “always choose
a = 07. None of these seem very desirable.

Example 25. If we continue the above example when fo(z) = Ay Le=2o7 and
fi(z) = AT te™M% we see that we choose a = 1 if

fi(x) ke a< log A1 — log Ag —|—logkz.
fo(z) A1 — o
You can think of the case k = 1 as the fair case where we choose the model which

is most likely. k > 1 penalizes choosing a = 1 whereas k < 1 penalizes choosing
a=0.

Proof of Neyman-Pearson’s fundamental lemma. The proof is outlined as follows.
First we consider a larger class C’ which contains C and show that C’ is complete.
Then we will show that each rule in C’ is dominated by a rule in C and that C is
minimal complete.

The class C’ consists of the class C and in addition the rules with testfunction of
the form

17 fl ({L’) > 07
) =
won@={ 0y BEZ0
We will show that C’ is complete. That is, for any rule § ¢ C’ there is a ¢’ € C’ that
dominates §. Let 0 ¢ C' be a rule with test function ¢ and put

a = R(0,0) = /X[L(O,O)(l — ¢(x)) + L(0,1)¢(x)] fo(x)v(dx) = /ko¢(93)fo(ﬂf)V(dl‘)-
We will now try to find a rule 6’ € C" with R(0,48") = a = R(0,6) and R(1,¢") <
R(1,4). We define the function

g(k) = ko fo(z)v(dz).

/{f1 (z)=kfo(z)}
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Note that if y(x) = 1 for all z and ¢’ has test function ¢y, then g(k) = R(0,).
We claim that he function g has the following properties:

e g(k) — 0 as k — oco.

e g(0)=ko > a.

e g(k) is continuous from the left and has limit from the right.

Note that f1(z) < oo v-a.e. and the set {f1(x) > kfo(z)} decreases to } with k.
Hence g(k) — 0 as k — oo. For the second claim,

g(0) = / ko fo(z)v(dz) = ko > .
x
Let us show that g is left continuous. We have that
() A{z: fil@) 2 kfo(@)} = {2 : filz) = mfo(a)}.
k<m,keQ

The monotone convergence theorem gives
li k) =
lim g(k) = g(m),
We see that ¢ is continuous from the left. To see is has limits from the right note

U =A@ = kfo(@)} ={z: filz) > mfo(z)} U{z: fo(z) = 0},

k>m,keQ

and since g is bounded the monotone convergence theorem implies

lim g(k) = ko fo(z)v(dz)

Fm /{f1 (@)>mfo(x)}
so the limit from the right exists.
Note that if v(z) = 0 for all  and ¢’ is a rule with test function ¢, ~, then
R(0,0") = limym g(k). Since g is left continuous one of two cases can occur.
(i) either g(k) decreases continuously to the level a, or
(ii) g(k) jumps from a level above «a to a level at most a.
In the first case there is a smallest k such that g(k) = « and we put k* = inf{k :
g(k) = a}. In the second case, there is a largest k such that g(k) > « and we put
k* = sup{k : g(k) > a}. In the case o = 0 it is possible that k* = co. If & > 0 we
must have k* < oo because g(k) | 0 as k — co. We will now construct a decision
rule 0" with test function ¢y . There are three cases to consider:
(1) « =0 and k* < oo,
(2) a =0 and k* = oo,
(3) @ >0 and k* < 0.
We proceed as follows. In each case 1, 2, and 3, we show that we can choose ~ such
that R(0,d") = R(0,6) = « and then that R(1,d") < R(1,9).
Case 1: Take y(z) = 0 for all z. Then

R(0,8") = Illfl? g(k) = a = R(0,9).
Define
h(z) =[x 5 (2) — ¢(2)][f1(z) — K™ fo(z)].

We know that ¢p- (z) =1 > ¢(x) on {z : fi(x) — k* fo(xz) > 0} and ¢« 4(x) =
0 < ¢(z) on {z : fi(x) — k*fo(x) < 0}. Since ¢ is not of the form ¢y, for any k
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and v there must be a set B such that v(B) > 0 and h(z) > 0 on B. Using that
fo(x) + fi(x) =1 (since v = Py + P;) we get

0< /B h(@)(dz) < / h(@)v(dz)
- / (61 () — Sa)] r(@)v(de) — K* / (61 () — S(a)] fola)v(da)

= [161-(0) = S @) + 1 — )
— %[3(1,5) ~ R(L,¥)].
Hence R(1,6) < R(1,¢").
Case 2: In this case

R(0,0") = /kogboo(x)fo(x)y(d:c) =0=oa.

Then since 0 = a = R(0,0), ¢(z) = 0 for all x such that fo(x) > 0. Then

RO =AG) >0k [ 1= g
> klpl(fo(X) > 0) = R(l,é')

Case 3: If g(k*) = a we set y(x) = 1 for all x, because then R(0,0") = g(k*) = a.
If g(k*) > a put

=1 < a.
v ]llirgl*g(k)_a

In this case, ¢ is discontinuous at k£* and
k()Po(fl(X) = k‘*f()(X)) = g(k*) —v>a—v2>0.
For x such that fi(z) = k* fo(x) we define

o —v
Then it follows that
R(0,8) = / Koo () fol)v(dz)
o —v
— koY d
o /{I=f1(w)—k*fo(w)} gty o )
—u4t %koPo(fl(X) =k fo(X)) = v

To see that R(1,0") < R(1,d) we can proceed exactly as in Case 1 because k* is
finite. This finishes the proof that C’ is complete.

To reduce from €’ to C we need to show that if 6 € C’ \ C then there is a rule
0" € C that dominates §. This will show that C is a complete class.

Take ¢’ € C"\ C. Then the test function is ¢q  for some v : X — [0, 1] such that
Py(v(X) > 0) > 0. Let dg be the test function with test function ¢g. Since f1(z) =0
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for all z in the set A = {x : ¢ () # do(x)} it follows that R(1,0) = R(1, o).
However,
R(0,6) = koEo[v(X)La(X)] + ko Po(f1(X) > 0)
= k‘oEo[’y(X)IA(X)] + R(O, 50) > R(O, 50)
Hence §y dominates . It only remains to show that no element in C is dominated

by any other element in C. This shows the minimality of the class. The proof of
this final step is an exercise (Problem 29, p. 212). O



