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Lecture 6

11. Decision theory

Recall from Section 8 that for a decision rule � and observation X = x we have
(in Bayesian setting) the posterior risk

r(� | x) =
Z

⌦
L(✓, �(x))µ⇥|X(d✓ | x),

where L(✓, �(x)) =
R

@ L(✓, a)�(da;x) if � is a randomized rule. If �0 is a decision
rule such that for all x, r(�0 | x) < 1 and for all x and all decision rules �
r(�0 | x)  r(� | x), then �0 is called a formal Bayes rule.

There is also a weaker concept than a formal Bayes rule. Denote by µ⇥ the
prior distribution of ⇥. Together with fX|⇥ this specifies the predictive (marginal)
distribution of X, µX . We call the function

r(µ⇥, �) =

Z

X
r(� | x)µX(dx)

the Bayes risk and each � that minimizes the Bayes risk is called a Bayes rule with
respect to µ⇥, assuming r(⌘, �) < 1. The Bayes risk is the mean of the posterior
risk, before observing X = x.

11.1. Classical decision theory. In classical decision theory we condition on
⇥ = ✓ and introduce the risk function

R(✓, �) =

Z

X
L(✓, �(x))µX|⇥(dx | ✓).

That is, the conditional mean of the loss, given ⇥ = ✓. Here we would like to find
a rule � that minimizes the risk function simultaneously for all values of ✓. As we
saw in the last lecture there may not be a rule that minimizes the risk function
simultaneously for all ✓. Therefore we introduce the notion of admissible rules.

Definition 16. Let � be a decision rule. If there exists a decision rule �1 such
that R(✓, �1)  R(✓, �) for all ✓ with strict inequality for some ✓, then we say � is
in-admissible and it is dominated by �1. Otherwise, � is admissible.

Of course, one should not use in-admissible decision rules.
As a weaker criterion one can, as in the Bayesian setting, take a prior distribution

µ⇥ for ⇥ and try to minimize
Z

⌦
R(✓, �)µ⇥(d✓).

Note that by Fubini’s theorem we have
Z

⌦
R(✓, �)µ⇥(d✓) =

Z

⌦

Z

X
L(✓, �(x))µX|⇥(dx | ✓)µ⇥(d✓)

=

Z

X

Z

⌦
L(✓, �(x))µ⇥|X(d✓ | x)µX(dx)

=

Z

X
r(� | x)µX(dx) = r(⌘, �)

which is the Bayes risk with respect to µ⇥.
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Minimax rules. For a given problem there might be many admissible decision
rules, but we may not be able to find one which dominates all the others. In that
case we need a criteria to decide which rule to take. We have already seen the
possibility of choosing a Bayes rule with respect a some prior distribution ⌘. A
di↵erent criteria is the following.

Definition 17. A decision rule �0 is called minimax if

sup
✓2⌦

R(✓, �0)  inf
�
sup
✓2⌦

R(✓, �).

That is, a minimax has the smallest upper bound of the risk function. That is,
we prepare for the worst possible ✓ and choose the rule which has the smallest risk
for this worst ✓. One could ask how minimax rules are connected to Bayes rules. If
� is a prior for ⇥ we have

r(�, �) =

Z

⌦
R(✓, �)�(d✓).

Hence, if � puts all its mass on those ✓ that maximizes R(✓, �) we see that

sup
�

r(�, �) = sup
✓

R(✓, �).

This choice of � depends on the decision rule �.

Definition 18. A prior distribution �0 for ⇥ is least favorable if inf� r(�0, �) =
sup� inf� r(�, �).

That is, �0 is a prior such that the corresponding Bayes rule has the highest
possible risk.

For any fixed prior �0 and decision rule �0 we have

inf
�
r(�0, �)  r(�0, �0)  sup

�
r(�, �0).

Therefore we can introduce the following concept.

Definition 19. Let

V� ⌘ sup
�

inf
�
r(�, �)  inf

�
sup
�

r(�, �) = inf
�
sup
✓

R(✓, �) ⌘ V �.

Then V� is the maximin value of the decision problem and V � is the minimax value
of the decision problem.

How can we check that a rule is minimax and a prior least favorable?

Theorem 16. If �0 is a Bayes rule with respect to �0 and R(✓, �0)  r(�0, �0) for
all ✓, then �0 is minimax and �0 is least favorable.

Proof. Since

V �  sup
✓

R(✓, �0)  r(�0, �0) = inf
�
r(�0, �)  V�

and V�  V � it must be that V� = V � and the claim follows. ⇤

The theorem gives you a condition to check but when can we actually find
minimax rules. We will consider the case where ⌦ is finite, ⌦ = {✓1, . . . , ✓k}. In
that case the risk function R(✓, �) for a given decision rule � is just a vector in Rk.
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Definition 20. Suppose ⌦ = {✓1, . . . , ✓k}, let

R = {z 2 Rk : zi = R(✓i, �), i = 1, . . . , k, for some decision rule �}.

The set R is called the risk set. For any C ⇢ Rk the lower boundary is the set

{z 2 C� : xi  zi, i = 1 . . . , k and xi < zi for some i implies x /2 C�}.
The lower boundary of the risk set is denoted @L. The risk set is closed from below
if @L ⇢ R.

Lemma 3. The risk set is convex.

Proof. For i = 1, 2 let zi 2 R be points that correspond to the decision rules �i and
take � 2 [0, 1]. Then �z1+(1��)z2 is the risk function of the randomized decision
rule corresponding to taking �1 with probability � and �2 with probability 1 � �.
Hence, it belongs to the risk set R. ⇤

Consider Example 3.72, p. 170 in Schervish “Theory of statistics”.

Theorem 17 (Minimax theorem). Suppose the loss function is bounded from below
and ⌦ is finite. Then sup� inf� r(�, �) = inf� sup✓ R(✓, �) and a least favorable prior
�0 exists. If R is closed from below, then there exists a minimax rule that is a Bayes
rule with respect to �0.

Proof. For any real number s let As = {z 2 Rk : zi  s, i = 1, . . . , k}. That is, As

is an orthant. It is closed and convex for each s. Take s0 = inf{s : As \ R 6= ;}.
Then

s0 = inf
�
sup
✓

R(✓, �).

Indeed, for each z 2 As \ R there is a decision rule � such that sup✓ R(✓, �) =
maxi R(✓i, �)  s. Taking inf over s corresponds exactly to taking inf over �. Next
note that the interior of As0 is convex and does not intersect R. The separating
hyperplane theorem says that there exists a vector v and a real number c such that
vT z � c for each z 2 R and vT z  c for each x in the interior of As0 . It is necessary
that each coordinate of v satisfies vj � 0. Otherwise, if vj < 0 we can find a
sequence xn in the interior of As0 with limn xni = �1 and all other xnj = s0 � "

and then limn v
Txn = 1 > c, which is a contradiction. If we put �0j = vj/

Pk
j=1 vj

we get a probability measure on ⌦ which is least favorable. Indeed, since (s0, . . . , s0)

is in the closure of the interior of As0 it follows that c � s0
Pk

j=1 vj and we have

inf
�
r(�0, �) = inf

z2R
�T
0 z � c

Pk
j=1 vj

� s0 = inf
�
sup
✓

R(✓, �)

This shows that �0 is least favorable.
We were not able to cover the proof that there exists a minimax rule. We refer

to the book (Schervish, p.173). ⇤
11.2. On finding a formal Bayes rule. In Bayesian decision theory the following
is a good way to find a deterministic formal Bayes rule.

(1) Take x 2 X .
(2) Find a 2 @ that minimizes

R

⌦ L(✓, a)µ⇥|X(d✓ | x).
(3) Put �(x) = a.
(4) Repeat for all x.
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However, it is not always that a formal Bayes rule exists, for instance the mini-
mum in step (2) may not exist in @. Here is an example

Example 23. Let X ⇠ N(✓, 1) and ⇥ ⇠ N(0, 1) where ⌦ = R. Then the posterior
is N(x/2, 1/2). Let the action space be @ = R and the loss function L(✓, a) = 0 if
a � ✓, L(✓, a) = 1 if a < ✓. That is, a loss occurs if our guess of ✓ is below ✓. Then
for any x

Z

⌦
L(✓, a)µ⇥|X(d✓ | x) = µ⇥|X(⇥ > a | x) = 1� �

⇣a� x/2

1/
p
2

⌘

.

This converges to 0 as a ! 1, so the risk is minimized at a = 1 but this is not in
the action space @. For this example no formal Bayes rule exists.

12. The Neyman-Pearson fundamental lemma

Definition 21. A class C of decision rules is complete if for every � /2 C there exists
�0 2 C that dominates �, i.e. R(✓, �0)  R(✓, �) 8✓ with strict inequality for some ✓.

A class in minimal complete if no proper subclass is also complete.

To see the relation to admissible decision rules, we have the following:

Lemma 4. A minimal complete class consists exactly of the admissible decision
rules.

Proof. First we show that � admissible implies � 2 C. Indeed, if � /2 C then there
exists �0 2 C that dominates � which contradicts that � is admissible.

For the other inclusion we need to show that � 2 C implies � is admissible.
Suppose it is not admissible. Then exists a dominating rule �1. Either �1 2 C or
�1 /2 C. In the first case put �2 = �1. In the second, there is �2 2 C that dominates
�1. Thus, in both cases �2 2 C dominates �. If �0 is a rule that is dominated by
�, then it is also dominated by �2. This implies that C \ {�} is complete. This
is a contradiction because we assumed that C is minimal complete. Hence, � is
admissible. ⇤

There is one, simple case, where a minimal complete class can be found. This is
called the Neyman-Pearson fundamental lemma.

Theorem 18. Let ⌦ = @ = {0, 1}, L(0, 0) = L(1, 1) = 0, L(1, 0) = k1 > 0, and
L(0, 1) = k0 > 0. Let fi(x) = dPi/d⌫ where ⌫ is P0 + P1. For �, a decision rule,
let �(x) = �({1};x) be the test function of �. Let C be the class of rules with test
functions of the form below:

For each k 2 (0,1) and each function � : X ! [0, 1],

�k,�(x) =

8

<

:

1, f1(x) > kf0(x),
�(x), f1(x) = kf0(x),
0, f1(x) < kf0(x).

For k = 0,

�0(x) =

⇢

1, f1(x) > 0,
0, f1(x) = 0.

For k = 1,

�1(x) =

⇢

1, f0(x) = 0,
0, f0(x) > 0.
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Then C is a minimal complete class.

Before we prove the result let us see what the decision rules are. The decision
rules are asssociated with a threshold k 2 [0,1].

• To k = 0 there corresponds one decision rule which says “choose a = 1 if
f1(x) > 0 and a = 0 otherwise”.

• To k = 1 there corresponds one decision rule which says “choose a = 1 if
f0(x) = 0 and a = 0 otherwise”.

• To each k 2 (0,1) there are lots of decision rules. They all say that a = 1
should be chosen if it is su�ciently likely that ✓ = 1. That is: “choose
a = 1 if f1(x) > kf0(x), choose a = 0 if f1(x) < kf0(x), and in the event
that we cannot decide f1(x) = kf0(x) we choose a = 1 with probability
�(x) where � is some function � : X ! [0, 1]”.

Example 24. The Neyman-Pearson lemma can be used when deciding between
competing models. Suppose we have two competing models for the distribution
of X given by continuous densities f0 and f1 w.r.t. Lebesgue measure. Based on
observing X = x we have to decide which is the more appropriate one. Decisions
are a = 1 “f1 is correct density” and a = 0 “f0 is correct”. The Neyman-Pearson
lemma says that the admissible rules (the minimal complete class) are of the form:
for k 2 (0,1) choose a = 1 if f1(x) > kf1(x) and a = 0 if f1(x) < kf0(x). There is
no need to specify the case f1(x) = kf0(x) since this even has probability zero. Also
the cases k = 0 or 1 corresponds to “always choose a = 1” and “always choose
a = 0”. None of these seem very desirable.

Example 25. If we continue the above example when f0(x) = ��1
0 e��0x and

f1(x) = ��1
1 e��1x we see that we choose a = 1 if

f1(x)

f0(x)
> k () x  log �1 � log �0 + log k

�1 � �0
.

You can think of the case k = 1 as the fair case where we choose the model which
is most likely. k > 1 penalizes choosing a = 1 whereas k < 1 penalizes choosing
a = 0.

Proof of Neyman-Pearson’s fundamental lemma. The proof is outlined as follows.
First we consider a larger class C0 which contains C and show that C0 is complete.
Then we will show that each rule in C0 is dominated by a rule in C and that C is
minimal complete.

The class C0 consists of the class C and in addition the rules with testfunction of
the form

�0,�(x) =

⇢

1, f1(x) > 0,
�(x), f1(x) = 0.

We will show that C0 is complete. That is, for any rule � /2 C0 there is a �0 2 C0 that
dominates �. Let � /2 C0 be a rule with test function � and put

↵ = R(0, �) =

Z

X
[L(0, 0)(1� �(x)) + L(0, 1)�(x)]f0(x)⌫(dx) =

Z

k0�(x)f0(x)⌫(dx).

We will now try to find a rule �0 2 C0 with R(0, �0) = ↵ = R(0, �) and R(1, �0) <
R(1, �). We define the function

g(k) =

Z

{f1(x)�kf0(x)}
k0f0(x)⌫(dx).
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Note that if �(x) = 1 for all x and �0 has test function �k,� then g(k) = R(0, �0).
We claim that he function g has the following properties:

• g(k) ! 0 as k ! 1.
• g(0) = k0 � ↵.
• g(k) is continuous from the left and has limit from the right.

Note that f1(x) < 1 ⌫-a.e. and the set {f1(x) � kf0(x)} decreases to ; with k.
Hence g(k) ! 0 as k ! 1. For the second claim,

g(0) =

Z

X
k0f0(x)⌫(dx) = k0 � ↵.

Let us show that g is left continuous. We have that
\

k<m,k2Q
{x : f1(x) � kf0(x)} = {x : f1(x) � mf0(x)}.

The monotone convergence theorem gives

lim
k"m

g(k) = g(m),

We see that g is continuous from the left. To see is has limits from the right note
[

k>m,k2Q
{x : f1(x) � kf0(x)} = {x : f1(x) > mf0(x)} [ {x : f0(x) = 0},

and since g is bounded the monotone convergence theorem implies

lim
k#m

g(k) =

Z

{f1(x)>mf0(x)}
k0f0(x)⌫(dx)

so the limit from the right exists.
Note that if �(x) = 0 for all x and �0 is a rule with test function �m,� , then

R(0, �0) = limk#m g(k). Since g is left continuous one of two cases can occur.

(i) either g(k) decreases continuously to the level ↵, or
(ii) g(k) jumps from a level above ↵ to a level at most ↵.

In the first case there is a smallest k such that g(k) = ↵ and we put k⇤ = inf{k :
g(k) = ↵}. In the second case, there is a largest k such that g(k) > ↵ and we put
k⇤ = sup{k : g(k) > ↵}. In the case ↵ = 0 it is possible that k⇤ = 1. If ↵ > 0 we
must have k⇤ < 1 because g(k) # 0 as k ! 1. We will now construct a decision
rule �0 with test function �k⇤,� . There are three cases to consider:

(1) ↵ = 0 and k⇤ < 1,
(2) ↵ = 0 and k⇤ = 1,
(3) ↵ > 0 and k⇤ < 1.

We proceed as follows. In each case 1, 2, and 3, we show that we can choose � such
that R(0, �0) = R(0, �) = ↵ and then that R(1, �0) < R(1, �).

Case 1: Take �(x) = 0 for all x. Then

R(0, �0) = lim
k#k⇤

g(k) = ↵ = R(0, �).

Define

h(x) = [�k⇤,�(x)� �(x)][f1(x)� k⇤f0(x)].

We know that �k⇤,�(x) = 1 � �(x) on {x : f1(x) � k⇤f0(x) > 0} and �k⇤,�(x) =
0  �(x) on {x : f1(x) � k⇤f0(x) < 0}. Since � is not of the form �k,� for any k
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and � there must be a set B such that ⌫(B) > 0 and h(x) > 0 on B. Using that
f0(x) + f1(x) = 1 (since ⌫ = P0 + P1) we get

0 <

Z

B

h(x)⌫(dx) 
Z

h(x)⌫(dx)

=

Z

[�k⇤,�(x)� �(x)]f1(x)⌫(dx)� k⇤
Z

[�k⇤,�(x)� �(x)]f0(x)⌫(dx)

=

Z

[�k⇤,�(x)� �(x)]f1(x)⌫(dx) +
k⇤

k0
(↵� ↵)

=
1

k1
[R(1, �)�R(1, �0)].

Hence R(1, �) < R(1, �0).
Case 2: In this case

R(0, �0) =

Z

k0�1(x)f0(x)⌫(dx) = 0 = ↵.

Then since 0 = ↵ = R(0, �), �(x) = 0 for all x such that f0(x) > 0. Then

R(1, �) = k1P1(f0(X) > 0) + k1

Z

{x:f0(x)=0}
[1� �(x)]f1(x)⌫)dx)

> k1P1(f0(X) > 0) = R(1, �0).

Case 3: If g(k⇤) = ↵ we set �(x) = 1 for all x, because then R(0, �0) = g(k⇤) = ↵.
If g(k⇤) > ↵ put

v = lim
k#k⇤

g(k)  ↵.

In this case, g is discontinuous at k⇤ and

k0P0(f1(X) = k⇤f0(X)) = g(k⇤)� v > ↵� v � 0.

For x such that f1(x) = k⇤f0(x) we define

0  �(x) =
↵� v

g(k⇤)� v
< 1.

Then it follows that

R(0, �0) =

Z

k0�k⇤,�(x)f0(x)⌫(dx)

= v +

Z

{x:f1(x)=k⇤f0(x)}
k0

↵� v

g(k⇤)� v
f0(x)⌫(dx)

= v +
↵� v

g(k⇤)� v
k0P0(f1(X) = k⇤f0(X)) = ↵.

To see that R(1, �0) < R(1, �) we can proceed exactly as in Case 1 because k⇤ is
finite. This finishes the proof that C0 is complete.

To reduce from C0 to C we need to show that if � 2 C0 \ C then there is a rule
�0 2 C that dominates �. This will show that C is a complete class.

Take �0 2 C0 \ C. Then the test function is �0,� for some � : X ! [0, 1] such that
P0(�(X) > 0) > 0. Let �0 be the test function with test function �0. Since f1(x) = 0
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for all x in the set A = {x : �0,�(x) 6= �0(x)} it follows that R(1, �) = R(1, �0).
However,

R(0, �) = k0E0[�(X)IA(X)] + k0P0(f1(X) > 0)

= k0E0[�(X)IA(X)] +R(0, �0) > R(0, �0).

Hence �0 dominates �. It only remains to show that no element in C is dominated
by any other element in C. This shows the minimality of the class. The proof of
this final step is an exercise (Problem 29, p. 212). ⇤


