Lecture 6

11. Decision theory

Recall from Section 8 that for a decision rule δ and observation $X=x$ we have (in Bayesian setting) the posterior risk

$$
r(\delta \mid x)=\int_{\Omega} L(\theta, \delta(x)) \mu_{\Theta \mid X}(d \theta \mid x)
$$

where $L(\theta, \delta(x))=\int_{\aleph} L(\theta, a) \delta(d a ; x)$ if δ is a randomized rule. If δ_{0} is a decision rule such that for all $x, r\left(\delta_{0} \mid x\right)<\infty$ and for all x and all decision rules δ $r\left(\delta_{0} \mid x\right) \leq r(\delta \mid x)$, then δ_{0} is called a formal Bayes rule.

There is also a weaker concept than a formal Bayes rule. Denote by μ_{Θ} the prior distribution of Θ. Together with $f_{X \mid \Theta}$ this specifies the predictive (marginal) distribution of X, μ_{X}. We call the function

$$
r\left(\mu_{\Theta}, \delta\right)=\int_{\mathcal{X}} r(\delta \mid x) \mu_{X}(d x)
$$

the Bayes risk and each δ that minimizes the Bayes risk is called a Bayes rule with respect to μ_{Θ}, assuming $r(\eta, \delta)<\infty$. The Bayes risk is the mean of the posterior risk, before observing $X=x$.
11.1. Classical decision theory. In classical decision theory we condition on $\Theta=\theta$ and introduce the risk function

$$
R(\theta, \delta)=\int_{\mathcal{X}} L(\theta, \delta(x)) \mu_{X \mid \Theta}(d x \mid \theta)
$$

That is, the conditional mean of the loss, given $\Theta=\theta$. Here we would like to find a rule δ that minimizes the risk function simultaneously for all values of θ. As we saw in the last lecture there may not be a rule that minimizes the risk function simultaneously for all θ. Therefore we introduce the notion of admissible rules.

Definition 16. Let δ be a decision rule. If there exists a decision rule δ_{1} such that $R\left(\theta, \delta_{1}\right) \leq R(\theta, \delta)$ for all θ with strict inequality for some θ, then we say δ is in-admissible and it is dominated by δ_{1}. Otherwise, δ is admissible.

Of course, one should not use in-admissible decision rules.
As a weaker criterion one can, as in the Bayesian setting, take a prior distribution μ_{Θ} for Θ and try to minimize

$$
\int_{\Omega} R(\theta, \delta) \mu_{\Theta}(d \theta)
$$

Note that by Fubini's theorem we have

$$
\begin{aligned}
\int_{\Omega} R(\theta, \delta) \mu_{\Theta}(d \theta) & =\int_{\Omega} \int_{\mathcal{X}} L(\theta, \delta(x)) \mu_{X \mid \Theta}(d x \mid \theta) \mu_{\Theta}(d \theta) \\
& =\int_{\mathcal{X}} \int_{\Omega} L(\theta, \delta(x)) \mu_{\Theta \mid X}(d \theta \mid x) \mu_{X}(d x) \\
& =\int_{\mathcal{X}} r(\delta \mid x) \mu_{X}(d x)=r(\eta, \delta)
\end{aligned}
$$

which is the Bayes risk with respect to μ_{Θ}.

Minimax rules. For a given problem there might be many admissible decision rules, but we may not be able to find one which dominates all the others. In that case we need a criteria to decide which rule to take. We have already seen the possibility of choosing a Bayes rule with respect a some prior distribution η. A different criteria is the following.

Definition 17. A decision rule δ_{0} is called minimax if

$$
\sup _{\theta \in \Omega} R\left(\theta, \delta_{0}\right) \leq \inf _{\delta} \sup _{\theta \in \Omega} R(\theta, \delta)
$$

That is, a minimax has the smallest upper bound of the risk function. That is, we prepare for the worst possible θ and choose the rule which has the smallest risk for this worst θ. One could ask how minimax rules are connected to Bayes rules. If λ is a prior for Θ we have

$$
r(\lambda, \delta)=\int_{\Omega} R(\theta, \delta) \lambda(d \theta)
$$

Hence, if λ puts all its mass on those θ that maximizes $R(\theta, \delta)$ we see that

$$
\sup _{\lambda} r(\lambda, \delta)=\sup _{\theta} R(\theta, \delta) .
$$

This choice of λ depends on the decision rule δ.
Definition 18. A prior distribution λ_{0} for Θ is least favorable if $\inf _{\delta} r\left(\lambda_{0}, \delta\right)=$ $\sup _{\lambda} \inf _{\delta} r(\lambda, \delta)$.

That is, λ_{0} is a prior such that the corresponding Bayes rule has the highest possible risk.

For any fixed prior λ_{0} and decision rule δ_{0} we have

$$
\inf _{\delta} r\left(\lambda_{0}, \delta\right) \leq r\left(\lambda_{0}, \delta_{0}\right) \leq \sup _{\lambda} r\left(\lambda, \delta_{0}\right) .
$$

Therefore we can introduce the following concept.
Definition 19. Let

$$
V_{-} \equiv \sup _{\lambda} \inf _{\delta} r(\lambda, \delta) \leq \inf _{\delta} \sup _{\lambda} r(\lambda, \delta)=\inf _{\delta} \sup _{\theta} R(\theta, \delta) \equiv V^{-}
$$

Then V_{-}is the maximin value of the decision problem and V^{-}is the minimax value of the decision problem.

How can we check that a rule is minimax and a prior least favorable?
Theorem 16. If δ_{0} is a Bayes rule with respect to λ_{0} and $R\left(\theta, \delta_{0}\right) \leq r\left(\lambda_{0}, \delta_{0}\right)$ for all θ, then δ_{0} is minimax and λ_{0} is least favorable.
Proof. Since

$$
V^{-} \leq \sup _{\theta} R\left(\theta, \delta_{0}\right) \leq r\left(\lambda_{0}, \delta_{0}\right)=\inf _{\delta} r\left(\lambda_{0}, \delta\right) \leq V_{-}
$$

and $V_{-} \leq V^{-}$it must be that $V_{-}=V^{-}$and the claim follows.
The theorem gives you a condition to check but when can we actually find minimax rules. We will consider the case where Ω is finite, $\Omega=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$. In that case the risk function $R(\theta, \delta)$ for a given decision rule δ is just a vector in \mathbb{R}^{k}.

Definition 20. Suppose $\Omega=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$, let

$$
R=\left\{z \in \mathbb{R}^{k}: z_{i}=R\left(\theta_{i}, \delta\right), i=1, \ldots, k, \text { for some decision rule } \delta\right\}
$$

The set R is called the risk set. For any $C \subset \mathbb{R}^{k}$ the lower boundary is the set

$$
\left\{z \in C^{-}: x_{i} \leq z_{i}, i=1 \ldots, k \text { and } x_{i}<z_{i} \text { for some } i \text { implies } x \notin C^{-}\right\}
$$

The lower boundary of the risk set is denoted ∂L. The risk set is closed from below if $\partial L \subset R$.

Lemma 3. The risk set is convex.
Proof. For $i=1,2$ let $z_{i} \in R$ be points that correspond to the decision rules δ_{i} and take $\lambda \in[0,1]$. Then $\lambda z_{1}+(1-\lambda) z_{2}$ is the risk function of the randomized decision rule corresponding to taking δ_{1} with probability λ and δ_{2} with probability $1-\lambda$. Hence, it belongs to the risk set R.

Consider Example 3.72, p. 170 in Schervish "Theory of statistics".

Theorem 17 (Minimax theorem). Suppose the loss function is bounded from below and Ω is finite. Then $\sup _{\lambda} \inf _{\delta} r(\lambda, \delta)=\inf _{\delta} \sup _{\theta} R(\theta, \delta)$ and a least favorable prior λ_{0} exists. If R is closed from below, then there exists a minimax rule that is a Bayes rule with respect to λ_{0}.

Proof. For any real number s let $A_{s}=\left\{z \in \mathbb{R}^{k}: z_{i} \leq s, i=1, \ldots, k\right\}$. That is, A_{s} is an orthant. It is closed and convex for each s. Take $s_{0}=\inf \left\{s: A_{s} \cap R \neq \emptyset\right\}$. Then

$$
s_{0}=\inf _{\delta} \sup _{\theta} R(\theta, \delta) .
$$

Indeed, for each $z \in A_{s} \cap R$ there is a decision rule δ such that $\sup _{\theta} R(\theta, \delta)=$ $\max _{i} R\left(\theta_{i}, \delta\right) \leq s$. Taking inf over s corresponds exactly to taking inf over δ. Next note that the interior of $A_{s_{0}}$ is convex and does not intersect R. The separating hyperplane theorem says that there exists a vector v and a real number c such that $v^{T} z \geq c$ for each $z \in R$ and $v^{T} z \leq c$ for each x in the interior of $A_{s_{0}}$. It is necessary that each coordinate of v satisfies $v_{j} \geq 0$. Otherwise, if $v_{j}<0$ we can find a sequence x_{n} in the interior of $A_{s_{0}}$ with $\lim _{n} x_{n i}=-\infty$ and all other $x_{n j}=s_{0}-\varepsilon$ and then $\lim _{n} v^{T} x_{n}=\infty>c$, which is a contradiction. If we put $\lambda_{0 j}=v_{j} / \sum_{j=1}^{k} v_{j}$ we get a probability measure on Ω which is least favorable. Indeed, since $\left(s_{0}, \ldots, s_{0}\right)$ is in the closure of the interior of $A_{s_{0}}$ it follows that $c \geq s_{0} \sum_{j=1}^{k} v_{j}$ and we have

$$
\inf _{\delta} r\left(\lambda_{0}, \delta\right)=\inf _{z \in R} \lambda_{0}^{T} z \geq \frac{c}{\sum_{j=1}^{k} v_{j}} \geq s_{0}=\inf _{\delta} \sup _{\theta} R(\theta, \delta)
$$

This shows that λ_{0} is least favorable.
We were not able to cover the proof that there exists a minimax rule. We refer to the book (Schervish, p.173).
11.2. On finding a formal Bayes rule. In Bayesian decision theory the following is a good way to find a deterministic formal Bayes rule.
(1) Take $x \in \mathcal{X}$.
(2) Find $a \in \aleph$ that minimizes $\int_{\Omega} L(\theta, a) \mu_{\Theta \mid X}(d \theta \mid x)$.
(3) Put $\delta(x)=a$.
(4) Repeat for all x.

However, it is not always that a formal Bayes rule exists, for instance the minimum in step (2) may not exist in \aleph. Here is an example
Example 23. Let $X \sim N(\theta, 1)$ and $\Theta \sim N(0,1)$ where $\Omega=\mathbb{R}$. Then the posterior is $N(x / 2,1 / 2)$. Let the action space be $\aleph=\mathbb{R}$ and the loss function $L(\theta, a)=0$ if $a \geq \theta, L(\theta, a)=1$ if $a<\theta$. That is, a loss occurs if our guess of θ is below θ. Then for any x

$$
\int_{\Omega} L(\theta, a) \mu_{\Theta \mid X}(d \theta \mid x)=\mu_{\Theta \mid X}(\Theta>a \mid x)=1-\Phi\left(\frac{a-x / 2}{1 / \sqrt{2}}\right)
$$

This converges to 0 as $a \rightarrow \infty$, so the risk is minimized at $a=\infty$ but this is not in the action space \aleph. For this example no formal Bayes rule exists.

12. The Neyman-Pearson fundamental lemma

Definition 21. A class \mathcal{C} of decision rules is complete if for every $\delta \notin \mathcal{C}$ there exists $\delta_{0} \in \mathcal{C}$ that dominates δ, i.e. $R\left(\theta, \delta_{0}\right) \leq R(\theta, \delta) \forall \theta$ with strict inequality for some θ. A class in minimal complete if no proper subclass is also complete.
To see the relation to admissible decision rules, we have the following:
Lemma 4. A minimal complete class consists exactly of the admissible decision rules.

Proof. First we show that δ admissible implies $\delta \in \mathcal{C}$. Indeed, if $\delta \notin \mathcal{C}$ then there exists $\delta_{0} \in \mathcal{C}$ that dominates δ which contradicts that δ is admissible.

For the other inclusion we need to show that $\delta \in \mathcal{C}$ implies δ is admissible. Suppose it is not admissible. Then exists a dominating rule δ_{1}. Either $\delta_{1} \in \mathcal{C}$ or $\delta_{1} \notin \mathcal{C}$. In the first case put $\delta_{2}=\delta_{1}$. In the second, there is $\delta_{2} \in \mathcal{C}$ that dominates δ_{1}. Thus, in both cases $\delta_{2} \in \mathcal{C}$ dominates δ. If δ^{\prime} is a rule that is dominated by δ, then it is also dominated by δ_{2}. This implies that $\mathcal{C} \backslash\{\delta\}$ is complete. This is a contradiction because we assumed that \mathcal{C} is minimal complete. Hence, δ is admissible.

There is one, simple case, where a minimal complete class can be found. This is called the Neyman-Pearson fundamental lemma.
Theorem 18. Let $\Omega=\aleph=\{0,1\}, L(0,0)=L(1,1)=0, L(1,0)=k_{1}>0$, and $L(0,1)=k_{0}>0$. Let $f_{i}(x)=d P_{i} / d \nu$ where ν is $P_{0}+P_{1}$. For δ, a decision rule, let $\phi(x)=\delta(\{1\} ; x)$ be the test function of δ. Let \mathcal{C} be the class of rules with test functions of the form below:

For each $k \in(0, \infty)$ and each function $\gamma: \mathcal{X} \rightarrow[0,1]$,

$$
\phi_{k, \gamma}(x)=\left\{\begin{array}{cc}
1, & f_{1}(x)>k f_{0}(x) \\
\gamma(x), & f_{1}(x)=k f_{0}(x) \\
0, & f_{1}(x)<k f_{0}(x)
\end{array}\right.
$$

For $k=0$,

$$
\phi_{0}(x)= \begin{cases}1, & f_{1}(x)>0 \\ 0, & f_{1}(x)=0\end{cases}
$$

For $k=\infty$,

$$
\phi_{\infty}(x)= \begin{cases}1, & f_{0}(x)=0 \\ 0, & f_{0}(x)>0\end{cases}
$$

Then \mathcal{C} is a minimal complete class.
Before we prove the result let us see what the decision rules are. The decision rules are asssociated with a threshold $k \in[0, \infty]$.

- To $k=0$ there corresponds one decision rule which says "choose $a=1$ if $f_{1}(x)>0$ and $a=0$ otherwise".
- To $k=\infty$ there corresponds one decision rule which says "choose $a=1$ if $f_{0}(x)=0$ and $a=0$ otherwise".
- To each $k \in(0, \infty)$ there are lots of decision rules. They all say that $a=1$ should be chosen if it is sufficiently likely that $\theta=1$. That is: "choose $a=1$ if $f_{1}(x)>k f_{0}(x)$, choose $a=0$ if $f_{1}(x)<k f_{0}(x)$, and in the event that we cannot decide $f_{1}(x)=k f_{0}(x)$ we choose $a=1$ with probability $\gamma(x)$ where γ is some function $\gamma: \mathcal{X} \rightarrow[0,1]$ ".
Example 24. The Neyman-Pearson lemma can be used when deciding between competing models. Suppose we have two competing models for the distribution of X given by continuous densities f_{0} and f_{1} w.r.t. Lebesgue measure. Based on observing $X=x$ we have to decide which is the more appropriate one. Decisions are $a=1$ " f_{1} is correct density" and $a=0$ " f_{0} is correct". The Neyman-Pearson lemma says that the admissible rules (the minimal complete class) are of the form: for $k \in(0, \infty)$ choose $a=1$ if $f_{1}(x)>k f_{1}(x)$ and $a=0$ if $f_{1}(x)<k f_{0}(x)$. There is no need to specify the case $f_{1}(x)=k f_{0}(x)$ since this even has probability zero. Also the cases $k=0$ or ∞ corresponds to "always choose $a=1$ " and "always choose $a=0$ ". None of these seem very desirable.
Example 25. If we continue the above example when $f_{0}(x)=\lambda_{0}^{-1} e^{-\lambda_{0} x}$ and $f_{1}(x)=\lambda_{1}^{-1} e^{-\lambda_{1} x}$ we see that we choose $a=1$ if

$$
\frac{f_{1}(x)}{f_{0}(x)}>k \Longleftrightarrow x \leq \frac{\log \lambda_{1}-\log \lambda_{0}+\log k}{\lambda_{1}-\lambda_{0}}
$$

You can think of the case $k=1$ as the fair case where we choose the model which is most likely. $k>1$ penalizes choosing $a=1$ whereas $k<1$ penalizes choosing $a=0$.
Proof of Neyman-Pearson's fundamental lemma. The proof is outlined as follows. First we consider a larger class \mathcal{C}^{\prime} which contains \mathcal{C} and show that \mathcal{C}^{\prime} is complete. Then we will show that each rule in \mathcal{C}^{\prime} is dominated by a rule in \mathcal{C} and that \mathcal{C} is minimal complete.

The class \mathcal{C}^{\prime} consists of the class \mathcal{C} and in addition the rules with testfunction of the form

$$
\phi_{0, \gamma}(x)=\left\{\begin{array}{cc}
1, & f_{1}(x)>0 \\
\gamma(x), & f_{1}(x)=0
\end{array}\right.
$$

We will show that \mathcal{C}^{\prime} is complete. That is, for any rule $\delta \notin \mathcal{C}^{\prime}$ there is a $\delta^{\prime} \in \mathcal{C}^{\prime}$ that dominates δ. Let $\delta \notin \mathcal{C}^{\prime}$ be a rule with test function ϕ and put
$\alpha=R(0, \delta)=\int_{\mathcal{X}}[L(0,0)(1-\phi(x))+L(0,1) \phi(x)] f_{0}(x) \nu(d x)=\int k_{0} \phi(x) f_{0}(x) \nu(d x)$.
We will now try to find a rule $\delta^{\prime} \in \mathcal{C}^{\prime}$ with $R\left(0, \delta^{\prime}\right)=\alpha=R(0, \delta)$ and $R\left(1, \delta^{\prime}\right)<$ $R(1, \delta)$. We define the function

$$
g(k)=\int_{\left\{f_{1}(x) \geq k f_{0}(x)\right\}} k_{0} f_{0}(x) \nu(d x) .
$$

Note that if $\gamma(x)=1$ for all x and δ^{\prime} has test function $\phi_{k, \gamma}$ then $g(k)=R\left(0, \delta^{\prime}\right)$.
We claim that he function g has the following properties:

- $g(k) \rightarrow 0$ as $k \rightarrow \infty$.
- $g(0)=k_{0} \geq \alpha$.
- $g(k)$ is continuous from the left and has limit from the right.

Note that $f_{1}(x)<\infty \nu$-a.e. and the set $\left\{f_{1}(x) \geq k f_{0}(x)\right\}$ decreases to \emptyset with k. Hence $g(k) \rightarrow 0$ as $k \rightarrow \infty$. For the second claim,

$$
g(0)=\int_{\mathcal{X}} k_{0} f_{0}(x) \nu(d x)=k_{0} \geq \alpha
$$

Let us show that g is left continuous. We have that

$$
\bigcap_{k<m, k \in \mathbb{Q}}\left\{x: f_{1}(x) \geq k f_{0}(x)\right\}=\left\{x: f_{1}(x) \geq m f_{0}(x)\right\} .
$$

The monotone convergence theorem gives

$$
\lim _{k \uparrow m} g(k)=g(m),
$$

We see that g is continuous from the left. To see is has limits from the right note

$$
\bigcup_{k>m, k \in \mathbb{Q}}\left\{x: f_{1}(x) \geq k f_{0}(x)\right\}=\left\{x: f_{1}(x)>m f_{0}(x)\right\} \cup\left\{x: f_{0}(x)=0\right\}
$$

and since g is bounded the monotone convergence theorem implies

$$
\lim _{k \downarrow m} g(k)=\int_{\left\{f_{1}(x)>m f_{0}(x)\right\}} k_{0} f_{0}(x) \nu(d x)
$$

so the limit from the right exists.
Note that if $\gamma(x)=0$ for all x and δ^{\prime} is a rule with test function $\phi_{m, \gamma}$, then $R\left(0, \delta^{\prime}\right)=\lim _{k \downarrow m} g(k)$. Since g is left continuous one of two cases can occur.
(i) either $g(k)$ decreases continuously to the level α, or
(ii) $g(k)$ jumps from a level above α to a level at most α.

In the first case there is a smallest k such that $g(k)=\alpha$ and we put $k^{*}=\inf \{k$: $g(k)=\alpha\}$. In the second case, there is a largest k such that $g(k)>\alpha$ and we put $k^{*}=\sup \{k: g(k)>\alpha\}$. In the case $\alpha=0$ it is possible that $k^{*}=\infty$. If $\alpha>0$ we must have $k^{*}<\infty$ because $g(k) \downarrow 0$ as $k \rightarrow \infty$. We will now construct a decision rule δ^{\prime} with test function $\phi_{k^{*}, \gamma}$. There are three cases to consider:
(1) $\alpha=0$ and $k^{*}<\infty$,
(2) $\alpha=0$ and $k^{*}=\infty$,
(3) $\alpha>0$ and $k^{*}<\infty$.

We proceed as follows. In each case 1,2 , and 3 , we show that we can choose γ such that $R\left(0, \delta^{\prime}\right)=R(0, \delta)=\alpha$ and then that $R\left(1, \delta^{\prime}\right)<R(1, \delta)$.

Case 1: Take $\gamma(x)=0$ for all x. Then

$$
R\left(0, \delta^{\prime}\right)=\lim _{k \downarrow k^{*}} g(k)=\alpha=R(0, \delta)
$$

Define

$$
h(x)=\left[\phi_{k^{*}, \gamma}(x)-\phi(x)\right]\left[f_{1}(x)-k^{*} f_{0}(x)\right] .
$$

We know that $\phi_{k^{*}, \gamma}(x)=1 \geq \phi(x)$ on $\left\{x: f_{1}(x)-k^{*} f_{0}(x)>0\right\}$ and $\phi_{k^{*}, \gamma}(x)=$ $0 \leq \phi(x)$ on $\left\{x: f_{1}(x)-k^{*} f_{0}(x)<0\right\}$. Since ϕ is not of the form $\phi_{k, \gamma}$ for any k
and γ there must be a set B such that $\nu(B)>0$ and $h(x)>0$ on B. Using that $f_{0}(x)+f_{1}(x)=1$ (since $\left.\nu=P_{0}+P_{1}\right)$ we get

$$
\begin{aligned}
0 & <\int_{B} h(x) \nu(d x) \leq \int h(x) \nu(d x) \\
& =\int\left[\phi_{k^{*}, \gamma}(x)-\phi(x)\right] f_{1}(x) \nu(d x)-k^{*} \int\left[\phi_{k^{*}, \gamma}(x)-\phi(x)\right] f_{0}(x) \nu(d x) \\
& =\int\left[\phi_{k^{*}, \gamma}(x)-\phi(x)\right] f_{1}(x) \nu(d x)+\frac{k^{*}}{k_{0}}(\alpha-\alpha) \\
& =\frac{1}{k_{1}}\left[R(1, \delta)-R\left(1, \delta^{\prime}\right)\right] .
\end{aligned}
$$

Hence $R(1, \delta)<R\left(1, \delta^{\prime}\right)$.
Case 2: In this case

$$
R\left(0, \delta^{\prime}\right)=\int k_{0} \phi_{\infty}(x) f_{0}(x) \nu(d x)=0=\alpha
$$

Then since $0=\alpha=R(0, \delta), \phi(x)=0$ for all x such that $f_{0}(x)>0$. Then

$$
\begin{aligned}
R(1, \delta) & \left.\left.=k_{1} P_{1}\left(f_{0}(X)>0\right)+k_{1} \int_{\left\{x: f_{0}(x)=0\right\}}[1-\phi(x)] f_{1}(x) \nu\right) d x\right) \\
& >k_{1} P_{1}\left(f_{0}(X)>0\right)=R\left(1, \delta^{\prime}\right)
\end{aligned}
$$

Case 3: If $g\left(k^{*}\right)=\alpha$ we set $\gamma(x)=1$ for all x, because then $R\left(0, \delta^{\prime}\right)=g\left(k^{*}\right)=\alpha$. If $g\left(k^{*}\right)>\alpha$ put

$$
v=\lim _{k \downarrow k^{*}} g(k) \leq \alpha
$$

In this case, g is discontinuous at k^{*} and

$$
k_{0} P_{0}\left(f_{1}(X)=k^{*} f_{0}(X)\right)=g\left(k^{*}\right)-v>\alpha-v \geq 0 .
$$

For x such that $f_{1}(x)=k^{*} f_{0}(x)$ we define

$$
0 \leq \gamma(x)=\frac{\alpha-v}{g\left(k^{*}\right)-v}<1
$$

Then it follows that

$$
\begin{aligned}
R\left(0, \delta^{\prime}\right) & =\int k_{0} \phi_{k^{*}, \gamma}(x) f_{0}(x) \nu(d x) \\
& =v+\int_{\left\{x: f_{1}(x)=k^{*} f_{0}(x)\right\}} k_{0} \frac{\alpha-v}{g\left(k^{*}\right)-v} f_{0}(x) \nu(d x) \\
& =v+\frac{\alpha-v}{g\left(k^{*}\right)-v} k_{0} P_{0}\left(f_{1}(X)=k^{*} f_{0}(X)\right)=\alpha .
\end{aligned}
$$

To see that $R\left(1, \delta^{\prime}\right)<R(1, \delta)$ we can proceed exactly as in Case 1 because k^{*} is finite. This finishes the proof that \mathcal{C}^{\prime} is complete.

To reduce from \mathcal{C}^{\prime} to \mathcal{C} we need to show that if $\delta \in \mathcal{C}^{\prime} \backslash \mathcal{C}$ then there is a rule $\delta^{\prime} \in \mathcal{C}$ that dominates δ. This will show that \mathcal{C} is a complete class.

Take $\delta^{\prime} \in \mathcal{C}^{\prime} \backslash \mathcal{C}$. Then the test function is $\phi_{0, \gamma}$ for some $\gamma: \mathcal{X} \rightarrow[0,1]$ such that $P_{0}(\gamma(X)>0)>0$. Let δ_{0} be the test function with test function ϕ_{0}. Since $f_{1}(x)=0$
for all x in the set $A=\left\{x: \phi_{0, \gamma}(x) \neq \phi_{0}(x)\right\}$ it follows that $R(1, \delta)=R\left(1, \delta_{0}\right)$. However,

$$
\begin{aligned}
R(0, \delta) & =k_{0} E_{0}\left[\gamma(X) I_{A}(X)\right]+k_{0} P_{0}\left(f_{1}(X)>0\right) \\
& =k_{0} E_{0}\left[\gamma(X) I_{A}(X)\right]+R\left(0, \delta_{0}\right)>R\left(0, \delta_{0}\right) .
\end{aligned}
$$

Hence δ_{0} dominates δ. It only remains to show that no element in \mathcal{C} is dominated by any other element in \mathcal{C}. This shows the minimality of the class. The proof of this final step is an exercise (Problem 29, p. 212).

