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Lecture 9

17. Hypothesis testing

A special type of decision problem is hypothesis testing. We partition the pa-
rameter space into ⌦H [ ⌦A with ⌦H \ ⌦A = ;. We write

H : ⇥ 2 ⌦H

A : ⇥ 2 ⌦A.

A decision problem is called hypothesis testing if @ = {0, 1} and

L(✓, 1) > L(✓, 0), ✓ 2 ⌦H ,

L(✓, 1) < L(✓, 0), ✓ 2 ⌦A.

The action a = 1 is called rejecting the hypothesis and a = 0 is called not rejecting
the hypothesis. Note that the condition above says that the loss is greater if we
reject the hypothesis than if we do not reject when the hypothesis is true, and
similarly the loss is greater if we do not reject when the hypothesis is false.

• Type I error: If we reject H when H is true we have made a type I error.
• Tupe II error: If we do not reject H when H is false we have made a type
II error.

We can put

L(✓, 0) = 0, ✓ 2 ⌦H , not reject when H true,

L(✓, 1) = c, ✓ 2 ⌦H , reject when H true,

L(✓, 0) = 1, ✓ 2 ⌦A, not reject when H is false,

L(✓, 1) = 0, ✓ 2 ⌦A, reject when H false.

Such a loss function is called a 0 � 1 � c loss function. If c = 1 it is a 0 � 1 loss
function.

Here are some standard definitions:

• The test function of a test is the function � : X ! [0, 1] given by

�(x) = �({1};x),

the probability of choosing a = 1 (reject) when we observe x.
• The power function of a test � is

��(✓) = E✓�(X).

It is the probability to reject H given ⇥ = ✓.
• The characteristic operating curve is ⇢� = 1 � ��. It is the probability of
not rejecting H given ⇥ = ✓.

• The size of a test is sup✓2⌦H
��(✓). It is the maximum probability of

rejecting H when H is true.
• The test is called level ↵ if its size is at most ↵.
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17.1. Hypothesis testing in Bayesian case. In the Bayesian setting the hy-
pothesis is simply the decision problem with @ = {0, 1} and 0� 1� c-loss function.
Hence, the posterior risk is

r(1 | x) = cµ⇥|X(⌦H | x),
r(0 | x) = µ⇥|X(⌦A | x).

The optimal decision is to take a = 1 “reject the hypothesis” if

cµ⇥|X(⌦H | x) < µ⇥|X(⌦A | x).

This is equivalent to rejecting the hypothesis if

µ⇥|X(⌦H | x) < 1

1 + c
,

that is, if the posterior odds are too low.

Simple-simple hypothesis.

Definition 27. Let ⌦ = {✓0, ✓1}. The hypothesis H : ⇥ = ✓0 versus A : ⇥ = ✓1 is
called a simple-simple hypothesis.

Let us write f0 for the density when ⇥ = ✓0 and f1 when ⇥ = ✓1. Then, if
p0 = µ⇥(✓0) and p1 = 1� p0, we have

µ⇥|X(⌦H | x) = p0f0(x)

p0f0(x) + p1f1(x)
.

We reject the hypothesis when this ratio is less than 1/(1 + c).

One-sided tests.

Definition 28. Let ⌦ ⇢ R. A hypothesis of the form H : ⇥  ✓0 or H : ⇥ � ✓0 is
called a one-sided hypothesis.

A test with test function

�(x) =

8

<

:

1, x > x0,
�, x = x0,
0, x < x0,

or �(x) =

8

<

:

1, x < x0,
�, x = x0,
0, x > x0,

is called a one-sided test.

Bayesian hypothesis testing leads to one-sided tests if the posterior µ⇥|X(⌦H | x)
is monotone. Suppose, for instance, H : ⇥  ✓0 and A : ⇥ > ✓0. If µ⇥|X(⌦H | x)
is decreasing in x, then rejecting the hypothesis for x0 implies that one should reject
the hypothesis for all x > x0. Thus, the formal Bayes rule is to use a test with test
function of the form

�(x) =

8

<

:

1, x > x0,
�, x = x0,
0, x < x0,

for some x0. Similar remarks apply if µ⇥|X(⌦H | x) is increasing (then the other
form of one-sided tests should be used) as well as for one-sided hypothesis of the
form H : ⇥ � ✓0.
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Definition 29. If ⌦ ⇢ R, X ⇢ R, and dP✓/d⌫ = fX|⇥(x | ✓), then the parametric
family is said to have monotone likelihood ration (MLR) if for each ✓1 < ✓2 the
ratio

fX|⇥(x | ✓2)
fX|⇥(x | ✓1)

is a monotone function if x a.e. P✓1 + P✓2 in the same direction (inreasing or
decreasing) for each ✓1 < ✓2. If the ratio is increasing the family has increasing
MLR. If the ratio is decreasing the family has decreasing MLR.

Example 29. Let fX|⇥ form a one-parameter exponential family with natural
parameter ✓ and natural statistic T (X). Recall that (Lecture 4) T has a density of
the form c(✓) exp{✓t} w.r.t. a measure ⌫0T . Then

fT |⇥(t | ✓2)
fT |⇥(t | ✓1)

=
c(✓1)

c(✓2)
exp{t(✓2 � ✓1)}

is increasing for each ✓1 < ✓2. Hence, it has increasing MLR.

The MLR condition is su�cient to come up with one-sided tests.

Theorem 26. Suppose the parametric family fX| ⇥ is MLR and µ⇥ is a prior.
Then the posterior probability µ⇥|X([✓0,1) | x) and µ⇥|X((�1, ✓0] | x) are mono-
tone in x for each ✓0.

Proof. Let us prove the case of increasing MLR and the interval [✓0,1). We show
that µ⇥|X([✓0,1) | x) is nondecreasing. Take x1 < x2. Then

µ⇥|X([✓0,1) | x2)

µ⇥|X((1, ✓0) | x2)
�

µ⇥|X([✓0,1) | x1)

µ⇥|X((1, ✓0) | x1)

=

R

[✓0,1) fX|⇥(x2 | ✓)µ⇥(d✓)
R

(�1,✓0)
fX|⇥(x2 | ✓)µ⇥(d✓)

�

R

[✓0,1) fX|⇥(x1 | ✓)µ⇥(d✓)
R

(�1,✓0)
fX|⇥(x1 | ✓)µ⇥(d✓)

=

R

[✓0,1)

R

(�1,✓0)
[fX|⇥(x2 | ✓2)fX|⇥(x1 | ✓1)� fX|⇥(x2 | ✓1)fX|⇥(x1 | ✓2)]µ⇥(d✓1)µ⇥(d✓2)
R

(�1,✓0)
fX|⇥(x2 | ✓)µ⇥(d✓)

R

(�1,✓0)
fX|⇥(x1 | ✓)µ⇥(d✓)

.

Since the family has increasign MLR the integrand in the numerator is nonnegative
for each x1 < x2 and ✓1 < ✓2. Hence

0 
µ⇥|X([✓0,1) | x2)

µ⇥|X((1, ✓0) | x2)
�

µ⇥|X([✓0,1) | x1)

µ⇥|X((1, ✓0) | x1)

=
µ⇥|X([✓0,1) | x2)

1� µ⇥|X([✓0,1) | x2)
�

µ⇥|X([✓0,1) | x1)

1� µ⇥|X([✓0,1) | x1)
.

The result follows since x/(1� x) is increasing on [0, 1]. ⇤

Corollary 2. Suppose fX|⇥ form a parametric family with MLR and µ⇥ is a prior.
Suppose we are testing a one-sided hypothesis against the corresponding one-sided
alternative with a 0 � 1 � c loss function. Then one-sided tests are formal Bayes
rules.

Proof. We prove the case of increasing MLR and H : ⇥ � ✓0, A : ⇥ < ✓0. Then
µ⇥|X([✓0,1) | x) is increasing in x and µ⇥|X(�1, ✓0) | x) is decreasing in x. For
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a decision rule � with test function �(x) we have

r(� | x) = c�(x)µ⇥|X([✓0,1) | x) + (1� �(x))µ⇥|X(�1, ✓0) | x).

It is optimal to choose

�(x) =

8

<

:

1, if µ⇥|X([✓0,1) | x) < 1/(1 + c),
0, if µ⇥|X([✓0,1) | x) > 1/(1 + c),
�, if µ⇥|X([✓0,1) | x) = 1/(1 + c).

The one-sided test with

�(x) =

8

<

:

1, x < x0,
�, x = x0,
0, x < x0,

or �(x) =

8

<

:

0, x > x0,
�, x = x0,
0, x > x0,

can be written in the form above with x0 that solves (1+c)�1 = µ⇥|X([✓0,1) | x0).
Hence, it is a formal Bayes rule with this loss function. ⇤

Point hypothesis. In this section we are concerned with hypothesis of the form
H : ⇥ = ✓0 vs A : ⇥ 6= ✓0. Again it seems reasonable that tests of the form  in
Theorem 1 are appropriate.

Bayes factors. The Bayesian methodology also has a way of testing point hypoth-
esis. Suppose we want to test H : ⇥ = ✓0 against A : ⇥ 6= ✓0. If the prior has a
continuous distribution then the prior probability and the posterior probability of
⌦H is 0. Either one could replace the hypothesis with a small interval or use what
is called Bayes factors. Suppose we assign a probability p0 to the hypothesis so
that the prior is

µ⇥(A) = p0IA(✓0) + (1� p0)�(A \ {✓0})

where � is a probability measure on (⌦, ⌧). Then the joint density of (X,⇥) is

fX,⇥(x, ✓) = p0fX|⇥(x | ✓0)I{✓=✓0} + (1� p0)fX|⇥(x | ✓)I{✓ 6=✓0}.

The posterior density is

f⇥|X(✓ | x) = p1I{✓=✓0} + (1� p1)
fX|⇥(x | ✓)

fX(x)
I{✓ 6=✓0}

where p1 = p0fX|⇥(x | ✓0)/fX(x) is the posterior probability of the hypothesis.
Note that

p1
1� p1

=
p0

1� p0

fX|⇥(x | ✓0)
R

fX|⇥(x | ✓)�(d✓)
.

The second factor on the right is called the Bayes factor. Thus, the posterior odds
in favor of the hypothesis is the prior odds for the hypothesis times the Bayes factor.
It tells you how much the odds has increased or decreased after observing the data.
Testing a point hypothesis can be stated as ”reject H if the Bayes factor is below
a threshold k”.
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18. Classical hypothesis testing

18.1. Most powerful tests. In the classical setting the risk function of a test is
closely related to the power function. If the loss function is 0� 1� c then the risk
function is

R(✓,�) =

⇢

c��(✓), ✓ 2 ⌦H ,
1� ��(✓), ✓ 2 ⌦A.

Hence, most attention is on the power function.

Definition 30. Suppose ⌦ = ⌦H [ {✓1}, where ✓1 /2 ⌦H . A level ↵ test � is called
most powerful (MP) level ↵ if, for every other level ↵ test  , � (✓1)  ��(✓1).

A level ↵ test � is called uniformly most powerful (UMP) level ↵ if, for every
other level ↵ test  , � (✓)  ��(✓) for all ✓ 2 ⌦A.

Example 30. Suppose that ⌦ = {✓0, ✓1} and fi(x) is the density of P✓i w.r.t. some
measure ⌫ for both values of ✓ (one can take ⌫ = P✓0 + P✓1). Let

H : ⇥ = ✓0,

A : ⇥ = ✓1.

Then, the Neyman-Pearson fundamental lemma yields the form of the test functions
of all admissible tests. The test corresponding to the test function �k,� is

Reject H if f1(x) > kf0(x),

Do not reject H if f1(x) < kf0(x),

Reject H with probability �(x) if f1(x) = kf0(x).

All these tests are MP of their respective levels. Indeed, since these decision rules
form a minimal complete class we have for any other test  with the same level
that R(✓0,�k,�) = R(✓0, ), i.e. ��(✓0) = � (✓0) and R(✓1,�k,�)  R(✓1, ),
i.e. � (✓1)  ��k,�

(✓1).

18.2. Simple-simple hypothesis.

Definition 31. Let ⌦ = {✓0, ✓1}. The hypothesis H : ⇥ = ✓0 versus A : ⇥ = ✓1 is
called a simple-simple hypothesis.

Simple-simple hypothesis are covered by Neyman-Pearson’s fundamental lemma.
We will now take a closer look at them. Suppose for simplicity that the loss function
is 0� 1 so the risk function is

R(✓,�) =

⇢

��(✓), ✓ = ✓0,
1� ��(✓), ✓ = ✓1.

Then the risk function can be represented by a point (↵0,↵1) 2 [0, 1]2 where ↵0 =
R(✓0,�) and ↵1 = R(✓1,�). The risk set R corresponding to this decision problem
is a subset of [0, 1]2. Note that the test function �(x) ⌘ ↵0 corresponds to the
risk function (↵0, 1 � ↵0). As we let ↵0 vary in [0, 1] we see that R contains the
line y = 1� x, x 2 [0, 1]. Furthermore, R is symmetric around (1/2, 1/2). Indeed,
if the risk function of a test � is (a, b) then the risk function of the test 1 � � is
(1� a, 1� b), so this point is also in R. We know from Lecture 9, that R is convex.

Recall the definition of the lower boundary @L of the risk set. By definition @L
contains the admissible rules. Hence, the lower boundary is contained in the risk
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set R, so the risk set is closed from below. By symmetry around (1/2, 1/2) the risk
set is closed.

Recall that the admissible rules are given by the minimal complete class C in
Neyman-Pearson’s fundamental lemma. Hence, the good tests to choose to test a
simple-simple hypothesis are the tests in the class C.

From the Bayesian perspective the tests in C are Bayes rules with respect to
di↵erent priors. Indeed, each �k,� is a Bayes rule with respect a prior � = (�0,�1)
with 0 < �0 < 1. To see this, note that a Bayes rule w.r.t. � corresponds to a point
(↵0,↵1) that minimizes

r(�,�) = �0↵0 + �1↵1.

This is the inner product of (�0,�1) with (↵0,↵1) and graphically it is easy to see
that the minimum is on the lower boundary @L of the risk set.

One-sided tests. Recall the definition of one-side hypothesis and one-sided test
from Definition 28 (Lecture 15).

In this section we are interested in finding one-sided UMP tests. Recall a test �
is UMP level ↵ if for any other level ↵ test  , � (✓)  ��(✓) for all ✓ 2 ⌦A. (Level
↵ is that sup✓2⌦H

��(✓)  ↵).
In the Bayesian context we saw that the notion of MLR was convenient to de-

termine formal Bayes rules. The situation is similar here.

Theorem 27. If fX|⇥ forms a parametric family with increasing MLR, then any
test of the form

�(x) =

8

<

:

1, x > x0,
�, x = x0,
0, x < x0,

has nondecreasing power function. Each such test is UMP of its size for testing
H : ⇥  ✓0 versus A : ⇥ > ✓0, for each ✓0. Moreover, for each ↵ 2 [0, 1] and
each ✓0 2 ⌦ there exists x0 and � 2 [0, 1] such that � is UMP level ↵ for testing H
versus A.

Proof. First we show � has nondecreasing power function. Let ✓1 < ✓2. By
Neyman-Pearson’s fundamental lemma the MP test of H1 : ⇥ = ✓1 versus A1 :
⇥ = ✓2 is

�(x) =

8

<

:

1, fX|⇥(x | ✓2) > kfX|⇥(x | ✓1),
�(x), fX|⇥(x | ✓2) = kfX|⇥(x | ✓1),
0, fX|⇥(x | ✓2) < kfX|⇥(x | ✓1).

Since the MLR is increasing we can write � as

�(x) =

8

<

:

1, x > t�,
�(x), t�  x  t�,
0, x < t�,

(18.1)

For � of this form put ↵0 = ��(✓1). Let �↵0 ⌘ ↵0. Then, since � is MP we must
have ��(✓2) � ↵0. Hence � has nondecreasing power function.

Next, we show that we can have arbitrary level. Take ↵ 2 [0, 1] and put

x0 =

⇢

inf{x : P✓0(�1, x] � 1� ↵, ↵ < 1,
inf{x : P✓0(�1, x] > 0, ↵ = 1.
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Then ↵⇤ = P✓0(x0,1)  ↵ and P✓0({x0}) � ↵� ↵⇤. Now we take � of the form in
(18.1) with t� = x0 = t� and �(x0) = �⇤. Then

��(✓0) = E✓0 [�(X)] = P✓0(x0,1) + �⇤P✓0({x0}) = ↵⇤ + �⇤P✓0({x0}).
This is equal to ↵ if we take

�⇤ =

(

0 P✓0({x0}) = 0,
↵⇤�↵

P✓0 ({x0}) P✓0({x0}) > 0.

This � is MP level ↵ for testing H0 = ⇥ = ✓0 versus A : ⇥ = ✓1 for every ✓0 < ✓1,
since it is the same test for all ✓1. Hence � is UMP for testing H0 versus A. Since
��(✓) is nondecreasing, � has level ↵ for H, so it is UMP level ↵ for testing H
versus A. ⇤
Remark 3. There are similar results for testing H : ⇥ � ✓0 when the family has
increasing MLR and for testing either H : ⇥  ✓0 or H : ⇥ � ✓0 when the family
has decreasing MLR. The test � has to be modified, interchanging the condition
x > x0 to x < x0 accordingly.
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Lecture 10

18.3. Two-sided hypothesis.

Definition 32. If H : ⇥ � ✓2 or ⇥  ✓1 and A : ✓1 < ⇥ < ✓2, then the hypothesis
is two-sided. If H : ✓1  ⇥  ✓2 and A : ⇥ > ✓2 or ⇥ < ✓1, then the alternative is
two-sided.

Let us consider two-sided hypothesis.

Theorem 28 (c.f. Schervish, Thm 4.82, p. 249). In a one-parameter exponential
family with natural parameter ⇥, if ⌦H = (�1, ✓1] [ [✓2,1) and ⌦A = (✓1, ✓2),
with ✓1 < ✓2 a test of the form

�0(x) =

8

<

:

1, c1 < x < c2,
�i, x = ci,
0, c1 > x or c2 < x,

with c1  c2 minimizes ��(✓) for all ✓ < ✓1 and for all ✓ > ✓2, and it maximizes
��(✓) for all ✓ 2 (✓1, ✓2) subject to ��(✓i) = ↵i for i = 1, 2 where ↵i = ��0(✓i). If
c1, c2, �1, �2 are chosen so that ↵1 = ↵2 = ↵, then �0 is UMP level ↵.

Lemma 5. Let ⌫ be a measure and p0, p1, . . . , pn ⌫-integrable functions. Put

�0(x) =

8

<

:

1, p0(x) >
Pn

i=1 kipi(x),
�(x), p0(x) =

Pn
i=1 kipi(x),

0, p0(x) <
Pn

i=1 kipi(x),

where 0  �(x)  1 and ki are constants. Then �0 minimizes
R

[1��(x)]p0(x)⌫(dx)
subject to the constraints

Z

�(x)pj(x)⌫(dx) 
Z

�0(x)pj(x)⌫(dx), for j such that kj > 0,
Z

�(x)pj(x)⌫(dx) �
Z

�0(x)pj(x)⌫(dx), for j such that kj < 0

Similarly

�̃0(x) =

8

<

:

0, p0(x) >
Pn

i=1 kipi(x),
�(x), p0(x) =

Pn
i=1 kipi(x),

1, p0(x) <
Pn

i=1 kipi(x),

Then maximizes
R

[1� �(x)]p0(x)⌫(dx) subject to the constraints
Z

�(x)pj(x)⌫(dx) �
Z

�̃0(x)pj(x)⌫(dx), for j such that kj > 0,
Z

�(x)pj(x)⌫(dx) 
Z

�̃0(x)pj(x)⌫(dx), for j such that kj < 0

Proof. Use Lagrange multipliers. See Schervish pp. 246-247. ⇤

Proof of Theorem. A one parameter exponential family has density fX|⇥(x | ✓) =
h(x)c(✓)e✓x with respect to some measure ⌫. Suppose we include h(x) in ⌫ (that is,
we define a new measure ⌫0 with density h(x) with respect to ⌫) so that the density
is c(✓)e✓x with respect to ⌫0. Then we abuse notation and write ⌫ for ⌫0.

Let ✓1 and ✓2 be as in the statement of the theorem and let ✓0 be another
parameter value. Define pi(x) = c(✓i)e✓ix i = 0, 1, 2.
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Suppose ✓0 2 (✓1, ✓2). On this region we want to maximize ��(✓0) subject to
��(✓i) = ��0(✓i). Note that ��(✓i) =

R

�(x)pi(x)⌫(dx) and maximizing ��(✓0) is
equivalent to minimizing

R

[1 � �(x)]p0(x)⌫(dx). It seems we want to apply the
Lemma with k1 > 0 and k2 > 0. Applying the Lemma gives the test maximizing
��(✓0) as

�(x) =

8

<

:

1, p0(x) >
P2

i=1 kipi(x),
�(x), p0(x) =

P2
i=1 kipi(x),

0, p0(x) <
P2

i=1 kipi(x),

Note that

p0(x) >
2

X

i=1

kipi(x) () 1 > k1
c(✓1)

c(✓0)
e(✓1�✓0)x + k2

c(✓2)

c(✓0)
e(✓2�✓0)x.

Put bi = ✓i � ✓0 and ai = kic(✓i)/c(✓0), and we get

1 > a1e
b1x + a2e

b2x.

We want the break points to be c1 and c2 so we need to solve two equations

a1e
b1c1 + a2e

b2c1 = 1,

a1e
b1c2 + a2e

b2c2 = 1,

for a1, a2. The solution exists (check yourself) and has a1 > 0, a2 > 0 as required
(recall that we wanted k1, k2 > 0). So putting ki = aic(✓0)/c(✓i) gives the right
choice of ki in the minimizing test. Since the minimizing ✓ does not depend on ✓0
we get the same test for all ✓0 2 (✓1, ✓2).

For ✓0 < ✓1 or ✓0 > ✓2 we want to minimize ��(✓0). This is done in a similar
way using the second part of the Lemma.

Some work also remains to show that one can choose c1, c2, �1, �2 so that the test
has level ↵. We omitt the details. Full details are in the proof of Theorem 4.82, p.
249 in Schervish “Theory of Statistics”. ⇤

Interval hypothesis. In this section we consider hypothesis of the form H : ⇥ 2
[✓1, ✓2] versus A : ⇥ /2 [✓1, ✓2], ✓1 < ✓2. This will be called an interval hypothesis.
Unfortunately there is not always UMP tests for testing H vs A. For an example
in the case of point hypothesis see Example 8.3.19 in Casella & Berger (p. 392). On
the other hand, comparing with the situation when the hypothesis and alternative
are interchanged, one could guess that the test  = 1� �0, with �0 as in Theorem
28 is a good tests. One can show that this test satisfies a weaker criteria than UMP.

Definition 33. A test � is unbiased level ↵ if if has level ↵ and if ��(✓) � ↵ for all
✓ 2 ⌦A. If � is UMP among all unbiased tests it is called UMPU (uniformly most
powerful unbiased) level ↵.

If ⌦ ⇢ Rk, a test � is called ↵-similar if ��(✓) = ↵ for each ✓ 2 ⌦H \ ⌦A.

Proposition 5. The following holds:

(i) If � is unbiased level ↵ and �� is continuous, then � is ↵-similar.
(ii) If � is UMP level ↵, then � is unbiased level ↵.
(iii) If �� continuous for each � and �0 is UMP level ↵ and ↵-similar then �0

is UMPU.
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Proof. (i) ��  ↵ on ⌦H , �� � ↵ on ⌦A and �� continuous implies �� = ↵ on
⌦H \ ⌦A.
(ii) Let �↵ ⌘ ↵. Since � is UMP �� � � ↵ = ↵ on ⌦A. Hence � is unbiased level
↵.
(iii) Since �↵ is ↵-similar and �0 is UMP among ↵-similar tests we have ��0 �
� ↵ = ↵ on ⌦A. Hence �0 is unbiased level ↵. By continuity of �� any ↵-similar
level ↵ test � is unbiased level ↵ so ��0 � �� on ⌦A. Thus �0 is UMPU. ⇤

Theorem 29. Consider a one parameter exponential family with its natural pa-
rameter and the hypothesis H : ⇥ 2 [✓1, ✓2] vs A : ⇥ /2 [✓1, ✓2], ✓1 < ✓2. Let � be
any test of H vs A. Then there is a test  of the form

 (x) =

8

<

:

1, x /2 (c1, c2),
�i, x = ci,
0, x 2 (c1, c2),

such that � (✓i) = ��(✓i), � (✓)  ��(✓) on ⌦H and � (✓) � ��(✓) on ⌦A.
Moreover, if � (✓i) = ↵, then  is UMPU level ↵.

Proof. Put ↵i = ��(✓i). One can find a test �0 of the form in Theorem 3, Lecture 15,
such that ��0(✓i) = 1�↵i (we have not proved this in class, see Lemma 4.81, p. 248)
and then this �0 minimizes the power function on (1, ✓1)[ (✓2,1) and maximizes
it on (✓1, ✓2) among all tests �0 subject to ��0(✓i) = 1� ↵i. But then,  = 1� �0
satisfies � (✓i) = ↵i and maximizes the power function on (1, ✓1) [ (✓2,1) and
minimizes it on (✓1, ✓2) among all test subject to the restrictions. This proves the
first part.

If � (✓i) = ↵, then  is ↵-similar and hence  is UMP level ↵ among all ↵-
similar tests. For a one parameter exponential family �� is continuous for all � so
(iii) in the Proposition shows that  is UMPU level ↵. ⇤

Point hypothesis. In this section we are concerned with hypothesis of the form
H : ⇥ = ✓0 vs A : ⇥ 6= ✓0. Again it seems reasonable that tests of the form  in
Theorem 29 are appropriate.

Theorem 30. Consider a one parameter exponential family with natural parameter
and ⌦H = {✓0}, ⌦A = ⌦ \ {✓0} where ✓0 is in the interior of ⌦. Let � be any test
of H vs A. Then there is a test of the form  in Theorem 29 such that

� (✓0) = ��(✓0),

@✓� (✓0) = @✓��(✓0) (18.2)

and for ✓ 6= ✓0, � (✓) is maximized among all tests satisfying the two equalities.
Moreover, If  has size ↵ and @� (✓0) = 0, then it is UMPU level ↵.

Sketch of proof. First one need to show that there are tests of the form  that
satisfies the equialities.

Put ↵ = ��(✓0) and � = @✓��(✓0). Let �u be the UMP level u test for testing
H : ⇥ � ✓0 vs A : ⇥ < ✓0, and for 0  u  ↵ put

�0u(x) = �u(x) + 1� �1�↵+u(x).

Note that, for each 0  u  ↵,

��0
u
(✓0) = ��u(✓0) + 1� ��1�↵+u(✓0) = u+ 1� (1� ↵+ u) = ↵.
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Then �0u has the right form, i.e. as in Theorem 29. The test �00 = 1 � �1�↵ has
level ↵ and is by construction UMP level ↵ for testing H 0 : ⇥ = ✓0 vs A0 : ⇥ > ✓0.
Similarly �0↵ = �↵ is UMP level ↵ for testing H 0 : ⇥ = ✓0 vs A00 : ⇥ < ✓0. We claim
that

(i) @✓��0
↵
(✓0)  �  @✓��0

0
(✓0).

(ii) u 7! @✓��u
(✓0) is continuous.

The first is easy to see intuitively in a picture. A complete argument is in Lemma
4.103, p. 257 in Schervish. The second is a bit involved and we omitt it here. See
p. 259 for details. From (i) and (ii) we conclude that there is a test of the form  
(i.e. �0u0

for some u0) that satisfies (18.2).
It remains to show that this test maximizes the power function among all level

↵ tests satisfying the restriction on the derivative. For any test ⌘ we have

@✓�⌘(✓0) = @✓

Z

X
⌘(x)c(✓)e✓x⌫(dx)|✓=✓0

=

Z

X
⌘(x)(c(✓0)x+ c0(✓0))e

✓0x⌫(dx)

= E✓0 [X⌘(X)]� �⌘(✓0)E✓0 [X],

where we used integration by parts in the last step. Hence, @✓�⌘(✓0) = � i↵

E✓0 [X⌘(X)] = � + ↵E✓0 [X].

Note that the RHS does not depend on ⌘. For any ✓1 6= ✓0 and put

p0(x) = c(✓1)e
✓1x

p1(x) = c(✓0)e
✓0x

p2(x) = xc(✓0)e
✓0x.

Then

E✓0 [X⌘(X)] =

Z

⌘(x)p2(x)⌫(dx)

We know from last time (or Lemma 4.78, p. 247 using Lagrange multipliers) that
a test of the form

⌘0(x) =

8

<

:

1, p0(x) >
P2

i=1 kipi(x),
�(x), p0(x) =

P2
i=1 kipi(x),

0, p0(x) <
P2

i=1 kipi(x),

where 0  �(x)  1 and ki are constants, maximizes
R

⌘(x)p0(x)⌫(dx) subject to
the constraints

Z

⌘(x)pi(x)⌫(dx) 
Z

⌘0(x)pi(x)⌫(dx), for i such that ki > 0,
Z

⌘(x)pi(x)⌫(dx) �
Z

⌘0(x)pi(x)⌫(dx), for i such that ki < 0.

That is, it maximizes �⌘(✓1) subject to

�⌘(✓0)  (�)�⌘0(✓0)

E✓0 [⌘(X)]  (�) E✓0 [⌘0(X)],

where the direction of the inequalities depend on ki.
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The test ⌘0 corresponds to rejecting the hypothesis if

e(✓1�✓0)x > k1 + k2x.

By choosing k1 and k2 approprietly we can get a test of the form  which is the
same for all ✓1 6= ✓0.

Finally, we want to show that if the test is level ↵ and @✓��(✓0) = 0, the the test
is UMPU level ↵. For this we only need to show that @✓��(✓0) = 0 is necessary for
the test to be unbiased. But this is obvious because, since the power function is
di↵erentiable, if the derivative is either strictly positive or strictly then the power
function is less than ↵ in some left- or right-neighborhood of ✓0. ⇤

19. Nuisance parameters

Suppose the parameter ⇥ is multidimensional ⇥ = (⇥1, . . . ,⇥k) and ⌦H is of
lower dimension than k, say d dimensional d < k, then the remaining parameters
are called nuisance parameters.

Let P0 be a parametric family P0 = {P✓ : ✓ 2 ⌦}. Let G ⇢ ⌦ be a subparameter
space and Q0 = {P✓ : ✓ 2 G} be a subfamily of P0. Let  be the parameter of the
family Q0.

Definition 34. If T is a su�cient statistic for  in the classical sense, then a test
� has Neyman structure relative to G and T if E✓[�(X) | T = t] is constant as a
function of t P✓-a.s. for all ✓ 2 G.

Why is Neyman structure a good thing? It is because it sometimes enables a
procedure to obtain UMPU tests. Suppose that we can find statistic T such that
the distribution of X conditional on T has one-dimensional parameter. Then we
can try to find the UMPU test among all tests that have level ↵ conditional on T .
Then this test will also be UMPU level ↵ unconditionally.

There is a connection here with ↵-similar tests.

Lemma 6. If H is a hypothesis and Q0 = {P✓ : ✓ 2 ⌦H \⌦A} and � has Neyman
structure, then � is ↵-similar.

Proof. Since

��(✓) = E✓[�(X)] = E✓[E✓[�(X) | T ]]

and E✓[�(X) | T ] is constant for ✓ 2 ⌦H \ ⌦A we see that ��(✓) is constant on
⌦H \ ⌦A. ⇤

There is a converse under some slightly stronger assumptions.

Lemma 7. If T is a boundedly complete su�cient statistic for the subparameter
space G ⇢ ⌦, then every ↵-similar test on G has Neyman structure relative to G
and T .

Proof. By ↵-similarity E✓[E[�(X) | T ]�↵] = 0 for all ✓ 2 G. Since T is boundedly
complete we must have E[�(X) | T ] = ↵ P✓-a.s. for all ✓ 2 G. ⇤

Now we can use this to find conditions when UMPU tests exists.

Proposition 6. Let G = ⌦H \ ⌦A. Let I be an index set such that G = [i2IGi

is a partition of G. Suppose there exists a statistic T that is boundedly complete
su�cient statistic for each subparameter space Gi. Assume that the power function
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of every test is continuous. If there is a UMPU level ↵ test � among those which
have Neyman structure relative to Gi and T for all i 2 I, then � is UMPU level ↵.

Proof. From last time (Proposition 5(i)) we know that continuity of the power
function implies that all unbiased level ↵ tests are ↵-similar. By the previous
lemma every ↵-similar test has Neyman structure. Since � is UMPU level ↵ among
all such tests it is UMPU level ↵. ⇤

In the case of exponential families one can prove the following.

Theorem 31. Let X = (X1, . . . , Xk) have a k-parameter exponential family with
⇥ = (⇥1, . . . ,⇥k) and let U = (X2, . . . , Xk).

(i) Suppose that the hypothesis is one-sided or two-sided concerning only ⇥1.
Then there is a UMP level ↵ test conditional on U , and it is UMPU level
↵.

(ii) If the hypothesis concerns only ⇥1 and the alternative is two-sided, then
there is a UMPU level ↵ test conditional on U , and it is also UMPU level
↵.

Proof. Suppose that the density is

fX|⇥(x | ✓) = c(✓)h(x) exp{
k

X

i=1

✓ixi}.

Let G = ⌦H \ ⌦A. The conditional density of X1 given U = u = (x1, . . . , xk) is

fX1|⇥,U (x1 | ✓, u) = c(✓)h(x)e
Pk

i=1 ✓ixi

R

c(✓)h(x)e
Pk

i=1 ✓ixidx1

=
h(x)e✓1x1

R

h(x)e✓1x1dx1
.

This is a one-parameter exponential family with natural parameter ⇥1.
For the hypothesis (one- or two-sided) we have thatG is eitherG0 = {✓ : ✓1 = ✓01}

some ✓01 or the union G1 [ G1 with G1 = {✓ : ✓1 = ✓11}, G2 = {✓ : ✓1 = ✓21}. The
parameter  = (⇥2, . . . ,⇥k) has a complete su�cient statistic U = (X2, . . . , Xk).

Let ⌘ be an unbiased level ↵ test. Then by Proposition 5(i), ⌘ is ↵-similar on G0,
G1, and G2. By the previous lemma ⌘ has Neyman structure. Moreover, for every
test ⌘, �⌘(✓) = E✓[E✓[⌘(X) | U ]] so a test that maximizes the conditional power
function uniformly for ✓ 2 ⌦A subject to contraints also maximizes the marginal
power function subject to the same contstraints.

For part (i) in the conditional problem given U = u there is a level ↵ test
that maximizes the conditional power function uniformly on ⌦A subject to having
Neyman structure. Since every unbiased level ↵ test has Neyman structure and
the power function is the expectation of the conditional power function � is UMPU
level ↵.

For part (ii), if ⌦H = {✓ : c1  ✓1  c2} with c1 < c2, then as above the
conditional UMPU level ↵ test � is also UMPU level ↵.

For a point hypothesis ⌦H = {✓ : ✓1 = ✓01} we must take partial derivative of
�⌘(✓) with respect to ✓1 at every point in G. A little more work... ⇤
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Lecture 11

20. Likelihood ratio tests

When no UMP or UMPU tests exists one sometimes consider likelihood ratio
tests (LR). You consider the likelihood ratio

LR =
sup✓2⌦H

fX|⇥(X | ✓)
sup✓2⌦ fX|⇥(X | ✓) .

To test a hypothesis you reject H if LR < c for some number c. One chooses
c so that the test has a certain level ↵. The di�culty is often that to find the
appropriate c we need to know the distribution of LR. This can be di�cult.

21. P -values

In the Bayesian framework µ⇥|X(⌦H | x) gives the posterior probability that the
hypothesis is true given the observed data. This is quite useful information when
one is interested to know more than just if the hypothesis should be rejected or
not. For instance, if the hypothesis is rejected one could ask if the hypothesis was
close to being not rejected and the other way around. In the Bayesian setting we
get quite explicit information of this kind. In the classical framework there is no
such simple way to quantify how well the data supports the hypothesis. However,
in many situations the set of ↵-values such that the level ↵ test would reject H will
be an interval starting at some lower value p and extending to 1. In that case this
p will be called the P -value.

Definition 35. Let H be a hypothesis. Let � be a set indexing non-randomized
tests of H. That is, {�� : � 2 �} are non-randomized tests of H. For each � let
'(�) be the size of the test �� . Then

pH(x) = inf{'(�) : ��(x) = 1},

is called the P -value of x for the hypothesis H.

Example 31. Suppose X ⇠ N(✓, 1) given ⇥ = ✓ and H : ⇥ 2 [�1/2, 1/2]. The
UMPU level ↵ test of H is �↵(x) = 1 if |x| > c↵ for some number c↵. Suppose we
observe X = x = 2.18. The test �↵ will reject H i↵ 2.18 > c↵. Since c↵ increases
as ↵ decreases, the P -value is that ↵ such that c↵ = 2.18. That is,

pH(2.18) = inf{'(�) : ��(2.18) = 1}
= inf{ sup

✓2[�1/2,1/2]
���

(✓) : c� < 2.18}

= sup
✓2[�1/2,1/2]

��� (✓) s.t. c� = 2.18

= sup
✓2[�1/2,1/2]

1� �(2.18� ✓) + �(�2.18� ✓)

= 1� �(1.68) + �(�2.68) = 0.0502.

It is tempting to think of P -values as if it were the probability that the hypothesis
is true. This interpretation can sometimes be motivated. One example is the
following.
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Example 32. Suppose X ⇠ Bin(n, p) given P = p and let H : P  p0. The UMP
level ↵ test rejects H when X > c↵ where c↵ increases as ↵ decreases. The P -value
of an observed x is the value of ↵ such that c↵ = x� 1 unless x = 0 in which case
the P -value is equal to 1. In mathematical terms the P -value is

pH(x) = inf{'(�) : ��(x) = 1}
= inf{ sup

pp0

���
(p) : c� < x}

= sup
pp0

n
X

i=x

✓

n

i

◆

pi(1� p)n�i

=
n
X

i=x

✓

n

i

◆

pi0(1� p0)
n�i.

Note that pH(0) = 1. To see how this can correspond to the probability that the
hypothesis is true, consider an improper prior of the form Beta(0, 1). Then the
posterior distribution of P would be Beta(x, n + 1 � x). If x > 0 the posterior
probability that H is true is P (Y  p0) where Y ⇠ Beta(x, n + 1 � x). Note that
Y is the distribution of the xth order statistic from n IID uniform (0, 1) variables
and hence

P (Y  p0) = P (x out of n IID U(0, 1) variables less than p0)

=
n
X

i=x

✓

n

i

◆

pi0(1� p0)
n�i = pH(x).

Hence, pH(x) is the posterior probability that the hypothesis is true for this choice
of prior.

The usual interpretation of P -values is that the P -value measures the “degree
of support” for the hypothesis based on the observed data x. However, one should
be aware of that P -values does not always behave in a nice way.

Example 33. Consider Example 1 but with the hypothesis H 0 : ⇥ 2 [�0.82, 0.52].
Note that ⌦H0 � ⌦H . The UMPU level ↵ test is  ↵(x) = 1 if |x + 0.15| > d↵. If
X = x = 2.18 then d↵ = 2.33 and

pH0(2.18) = �(�3) + 1� �(1.66) = 0.0498.

This is smaller than pH(2.18)!!! Hence, if we interpret the P -value as the “degree
of support” for the hypothesis then the degree of support for H 0 is less than the
degree of support for H. But this is rediculus because ⌦H0 � ⌦H . This shows that
it is not always easy to interpret P -values.

22. Set estimation

We start with the classical notion of set estimation. Suppose we are interested in
a function g(⇥). The idea of set estimation is, given an observation X = x, to find
a set R(x) that contains the true value g(✓). Typically, we want the probability
Pr(g(✓) 2 R(X) | ⇥ = ✓) to be high.

Definition 36. Let g : ⌦ ! G be a function, ⌘ the collection of all subsets of G
and R : X ! ⌘ a function. The function R is a coe↵ecient � confidence set for g(⇥)
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if for every ✓ 2 ⌦,

{x : g(✓) 2 R(x)} is measurable, and Pr(g(✓) 2 R(X) | ⇥ = ✓) � �.

The confidence set R is exact if Pr(g(✓) 2 R(X) | ⇥ = ✓) = �. If inf✓2⌦ Pr(g(✓) 2
R(X) | ⇥ = ✓) > � the confidence set is conservative.

The interpretation of a level � confidence set R is the following.

• For any value of ✓, if the experiment of generating X from fX|⇥(· | ✓) is re-
peated many times, the confidence set R(X) will contain the true parameter
g(✓) a fraction � of the time.

The relation between hypothesis testing and confidence sets is seen from the
following theorem.

Theorem 32 (c.f. Casella & Berger Thm 9.2.2 p. 421). Let g : ⌦ ! G be a
function.

• For each y 2 G, let �y be a level ↵ nonrandomized test of H : g(⇥) = y.
Let R(x) = {y : �y(x) = 0}. Then R is a coe�cient 1 � ↵ confidence set
for g(⇥). The confidence set R is exact if and only if �y is ↵-similar for
all y.

• Let R be a coe�cient 1� ↵ confidence level set for g(⇥). For each y 2 G,
let

�y(x) = I{y /2 R(x)}.

Then, for each y, �y has level ↵ as a test of H : g(⇥) = y. The test �y is
↵-similar for all y if and only if R is exact.

Proof. Let �y be a nonrandomized level ↵ test. Then �y : X ! {0, 1} is measurable
for each y, because the corresponding decision rule is measurable. Hence the set

{x : g(✓) 2 R(x)} = {x : �g(✓)(x) = 0} = ��1
g(✓)({0})

is measurable. Moreover,

Pr(g(✓) 2 R(X) | ⇥ = ✓) = Pr(�g(✓)(X) = 0 | ⇥ = ✓)

= 1� Pr(�g(✓)(X) = 1 | ⇥ = ✓)

= 1� ��g(✓)
(✓) � 1� ↵

with equality i↵ ��g(✓)
(✓) = ↵. That is, there is equality i↵ �g(✓) is ↵-similar. This

proves the first part.
Let R be a coe�cient 1� ↵ confidence set and �y(x) = I{y /2 R(x)} . Then

��1
g(✓)({0}) = {x : �g(✓)(x) = 0} = {x : g(✓) 2 R(x)}

which is measurable. Hence �g(✓) is measurable and then the corresponding decision
rule is measurable. Moreover,

��g(✓)
(✓) = Pr(�g(✓)(X) = 1 | ⇥ = ✓)

= 1� Pr(�g(✓)(X) = 0 | ⇥ = ✓)

= 1� Pr(g(✓) 2 R(X) | ⇥ = ✓)  ↵.

We have equality in the last step i↵ R is exact, and this is the same as �g(✓) being
↵-similar. ⇤
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Example 34. Let X1, . . . , Xn be conditionally IID N(µ,�2) given (M,⌃) = (m,�).
Let X = (X1, . . . , Xn). The UMPU level ↵ test of H : M = y is �y = 1 ifp
n(x�y)/s > T�1

n�1(1�↵/2) where Tn�1 is the cdf of a student-t distribution with

n� 1 degrees of freedom. This translates into the confidence interval [x�T�1
n�1(1�

↵/2)s/
p
n, x+ T�1

n�1(1� ↵/2)s/
p
n].

One can suspect that there is an analog of UMP tests for confidence sets. The
corresponding concept is called UMA (uniformly most accurate) confidence set.

Definition 37. Let g : ⌦! G be a function and R a coe�cient � confidence set for
g(⇥). Let B : G ! ⌘ be a function such that y /2 B(y). Then R is uniformly most
accurate (UMA) coe�cient � against B if for each ✓ 2 ⇥ and each y 2 B(g(✓)) and
each coe�cient � confidence set T for g(⇥)

Pr(y 2 R(X) | ⇥ = ✓)  Pr(y 2 T (X) | ⇥ = ✓).

For y 2 G, the set B(y) can be thought of a set of points that you don’t want to
include in the confidence set. The condition above says that for y 2 B(g(✓)) (we
don’t want y in the confidence set) the probability that the confidence set contains
y is smaller if we use R than with any other level ↵ confidence set T .

Note also that the condition y /2 B(y) implies that g(✓) /2 B(g(✓)). We would
like the true value g(✓) to be in the confidence set so it should not be in B(g(✓)).

Now we can see how UMP tests are related to UMA confidence sets.

Theorem 33. Let g(✓) = ✓ for all ✓ and let B : ⌦! ⌘ be as in Definition 37. Put

B�1(✓) = {y : ✓ 2 B(y)}.

Suppose B�1(✓) is nonempty for each ✓. For each ✓, let �✓ be a test and R(x) =
{y : �y(x) = 0}. Then �✓ is UMP level ↵ for testing H : ⇥ = ✓ vs A : ⇥ 2 B�1(✓)
for all ✓ if and only if R is UMA coe�cient 1� ↵ randomized against B.

Proof. Suppose first that for each ✓, �✓ is UMP level ↵ for testing H vs A. Let T
be another coe�cient 1 � ↵ randomized confidence set. Let ✓ 2 ⌦ and y 2 B(✓).
We need to show that

P✓(y 2 R(X))  P✓(y 2 T (X)).

First we can observe that ✓ 2 B�1(y). Define  (x) = I(y /2 T (x)). This test has
level ↵ for testing H 0 : ⇥ = y vs A0 : ⇥ 2 B�1(y). Since �y is UMP for H 0 vs A0 it
follows that � (✓)  ��y

(✓). That is,

P✓(y 2 R(X)) = 1� P (y /2 R(X)) = 1� E✓�y(X) = 1� ��y
(✓)

 1� � (✓) = 1� E✓ (X) = 1� P✓(y /2 T (X)) = P✓(y 2 T (X)).

This shows the desired inequality.
For the other direction suppose R is UMA coe�cient 1�↵ randomized confidence

set against B. For ✓ 2 ⌦ let  ✓ be a level ↵ test of H and put T (x) = {y :  y(x) =
0}. Then T is a coe�cient 1� ↵ confidence set. Put

⌦0 = {(y, ✓) : y 2 ⌦, ✓ 2 B(y)} = {(y, ✓) : ✓ 2 ⌦, y 2 B�1(✓)}.

For each (✓, y) 2 ⌦0 we know Py(✓ 2 R(X))  Py(✓ 2 T (X)). By the calculation
above this is equivalent to ��✓

(y) � � ✓
(y) for all ✓ 2 ⌦ and all y 2 B�1(✓). That

is, �✓ is UMP level ↵ for H vs A. ⇤
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The theorem shows how to get a UMA confidence set from a UMP test. Nev-
ertheless, one has to be careful when constructing confidence sets. See Example
5.57, p. 319 in Schervish. This example shows that in some situations a naive
computation of the UMP level ↵ test and the corresponding UMA confidence set
can sometimes be inadequate.

22.1. Prediction sets. One attempt to do predictive inference in the classical
setting is the following.

Definition 38. Let V : S ! V0 be a random quantity. Let ⌘ be all subsets of V0

and R : X ! ⌘ a function. If

{(x, v) : v 2 R(x)} is measurable, and Pr(V 2 R(X) | ⇥ = ✓) � �, for each ✓ 2 ⌦,
then R is called a coe�cient � prediction set for V .

22.2. Bayesian set estimation. In the Bayesian setting we can, given a set
R(x) ⇢ G compute the posterior probability Pr(g(⇥) 2 R(x) | X = x). However,
to construct confidence sets we should go the other way and specify a coe�cient �
and then construct R to have this probability. There can be many such sets. To
choose between them one usually argues according to one of the following:

• Determine a number t such that T = {✓ : f⇥|X(✓ | x) � t} satisfies Pr(⇥ 2
T | X = x) = �. This is called the highest posterior density region (HDP).

• If ⌦ ⇢ R and a bounded interval is desired, choose the endpoints to be the
(1� �)/2 and (1 + �)/2 quantiles of the posterior distribution of ⇥.

Sometimes (for instance in Casella & Berger) such sets are called credibility sets.


