Statistical inference: De Finetti's Theorem

Timo Koski

20.01.2010

Nature of the Lecture

The lecture deals with personalistic probability modelling by De Finetti's theorem.

D. Heath & W. Sudderth: de Finetti's Theorem on Exchangeable Variables. *The American Statistician*, vol. 30, 4, pp. 188—189. (JSTOR) http://www.jstor.org/

Exchangeability

Definition

An infinite sequence of random variables $(X_1, X_2, ..., X_n, ...)$ is said to be **infinitely exchangeable** under probability measure p, if the joint probability of every finite subsequence $(X_{n_1}, X_{n_2}, ..., X_{n_k})$ satisfies

$$(X_{n_1},X_{n_2},\ldots,X_{n_k})\stackrel{d}{=} \left(X_{\tau(n_1)},X_{\tau(n_2)},\ldots,X_{\tau(n_k)}\right)$$

for all permutations τ defined on the set $\{1, 2, 3, \dots, k\}$.

Timo Koski () Matematisk statistik 20.01.2010

Personal Probability: Exchangeability

- Even the probability p is called exchangeable.
- The notion of exchangeability involves a judgement of complete symmetry among all the observables ('potentially infinite number of observables') under consideration. An infinite sequence of random variables $(X_1, X_2, \dots, X_n, \dots)$ is judged to be infinitely exchangeable.

Personal Probability: Exchangeability

Next we state and prove a famous representation theorem due to Bruno de Finetti. We prove it for a binary process. The proof below is due to Heath & Sudderth. There are several completely general proofs, see, e.g., (Schervish, Theory of Statistics, 1995). In a latter part of the lecture we use a key result proved found in R. Durrett: *Probability: Theory and Examples. Second Edition.* Duxbury Press, 1996, by a technique of reverse martingales, then completed by an more abstract measure theory argument from Schervish.

de Finetti² theorem is, as such, a result in probability theory. We include this in a course on statistical inference, because the theorem is a cornerstone of of Bayesian statistical inference, and is a critique of objectivistic modes of statistical inference.

Exchangeability: The Representation Theorem

Proposition

Let $(X_1, X_2, ..., X_n, ...)$ be an infinitely exchangeable sequence of binary random variables with probability measure p.

Then there exists a distribution function Π such that the joint probability $p(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ has the form

$$p(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \int_0^1 \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} \Pi(d\theta),$$

where Π is the distribution function

$$\Pi(\theta) = \lim_{n \to \infty} P\left(\frac{1}{n} \sum_{i=1}^{n} x_i \le \theta\right)$$

Timo Koski () Matematisk statistik 20.01.2010 6

We set for ease of writing

$$p(x_1, x_2,..., x_n) = p(X_1 = x_1, X_2 = x_2,..., X_n = x_n).$$

Suppose that $x_1 + \ldots + x_n = y_n \in \{0, 1, \ldots n\}$. Then exchangeability gives

$$p(x_1 + \ldots + x_n = y_n) = \binom{n}{y_n} p(x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(n)})$$

for any permutation τ of $\{1, 2, ..., n\}$, i.e.,

$$p\left(x_{\tau(1)},x_{\tau(2)},\ldots,x_{\tau(n)}\right) = \frac{1}{\binom{n}{y_n}}p\left(x_1+\ldots+x_n=y_n\right). \tag{1}$$

∢□▶ ∢圖▶ ∢團▶ ∢團▶ □■

Timo Koski () Matematisk statistik 20.01.2010 7 / 21

For arbitrary $N \ge n \ge y_n \ge 0$ we have by marginalization

$$p(x_1 + \ldots + x_n = y_n)$$

$$= \sum_{y_N = y_n}^{N - (n - y_n)} p(x_1 + \ldots + x_n = y_n | x_1 + x_2 + \ldots + x_N = y_N) p(x_1 + \ldots + x_N = y_N)$$

$$= \sum_{y_N = y_n}^{N - (n - y_n)} \frac{\binom{y_N}{y_n} \binom{N - y_N}{n - y_n}}{\binom{N}{n}} p(x_1 + \ldots + x_N = y_N)$$

Timo Koski () Matematisk statistik 20.01.2010 8 / 21

The expression above for

$$\sum_{y_{N}=y_{n}}^{N-(n-y_{n})} p(x_{1}+\ldots+x_{n}=y_{n}|x_{1}+\ldots+x_{N}=y_{N}) p(x_{1}+\ldots+x_{N}=y_{N})$$

can be argued as follows. It follows by the assumption of exchangeability that given the event $\{x_1 + ... + x_N = y_N\}$, all possible rearrangements of the y_n cases of ones in among the n places are equally likely.

Timo Koski () Matematisk statistik 20.01.2010 9 / 21

Thus we can think of an urn containing N items, of which y_N are ones, and $N-y_N$ are zeros. We pick n items without replacement. Then

$$\frac{\left(\begin{array}{c}y_{N}\\y_{n}\end{array}\right)\left(\begin{array}{c}N-y_{N}\\n-y_{n}\end{array}\right)}{\left(\begin{array}{c}N\\n\end{array}\right)}$$

is the probability of obtaining y_n ones and $n-y_n$ zeros, and the probability function of a hypergeometric distribution

 $Hyp(N, n, y_N)$, c.f. G. Blom, G. Englund et.al. kap. 7.3.)

$$\begin{split} & \frac{\left(\begin{array}{c} y_N \\ y_n \end{array}\right) \left(\begin{array}{c} N - y_N \\ n - y_n \end{array}\right)}{\left(\begin{array}{c} N \\ n \end{array}\right)} \\ & = \left(\begin{array}{c} n \\ y_n \end{array}\right) \cdot \frac{(y_N)_{y_n} (N - y_N)_{n - y_n}}{(N)_n}, \end{split}$$

where

$$(N)_n = N \cdot (N-1) \cdot (N-2) \cdots (N-(n-1)) = \frac{N!}{(N-n)!}$$

so that $(y_N)_{y_N} = y_N (y_N - 1) \cdots (y_N - (y_n - 1))$ etc.

11 / 21

In other words, by (1) we have

$$p\left(x_{\tau(1)},x_{\tau(2)},\ldots,x_{\tau(n)}\right)=\frac{1}{\binom{n}{y_n}}p\left(x_1+\ldots+x_n=y_n\right)$$

$$= \frac{1}{\binom{n}{y_n}} \sum_{y_N=y_n}^{N-(n-y_n)} \binom{n}{y_n} \cdot \frac{(y_N)_{y_n} (N-y_N)_{n-y_n}}{(N)_n} p(x_1 + \ldots + x_N = y_N)$$

Timo Koski () Matematisk statistik 20.01.2010 12 / 21

We define the function $\Pi_N(\theta)$, as a step function which is zero for $\theta < 0$ and has jumps of size $p(x_1 + x_2 + ... + x_N = y_N)$ at $\theta = y_N/N$, $y_N = 0, 1, ..., N$.

Thus we have

$$p(x_1 + \ldots + x_n = y_n)$$

$$= {n \choose y_n} \int_0^1 \frac{(\theta N)_{y_n} ((1 - \theta) N)_{n - y_n}}{(N)_n} d\Pi_N(\theta)$$

14 / 21

Proof of the Representation Theorem: basic probability

As
$$N \to \infty$$

$$\frac{(\theta N)_{y_n} \left((1-\theta)N\right)_{n-y_n}}{(N)_n} \to \theta^{y_n} (1-\theta)^{n-y_n}$$

uniformly in θ . (Approximation of a hypergeometric probability by a binomial probability, c.f., G. Blom, G. Englund et.al. kap. 7.3.)

Timo Koski () Matematisk statistik 20.01.2010 15 / 21

Approximation, $\operatorname{Hyp}(N, n, p)$ (an argument due to Jan Grandell)

$$\begin{split} \frac{\binom{N\theta}{k}\binom{N(1-\theta)}{n-k}}{\binom{N}{n}} &= \frac{N\theta!}{k!(N\theta-k)!} \frac{N(1-\theta)!}{(n-k)![N(1-\theta)-(n-k)]!} \frac{n!(N-n)!}{N!} \\ &= \frac{n!}{k!(n-k)!} \frac{N\theta!(N(1-\theta)!(N-n)!}{(N\theta-k)![N(1-\theta)-(n-k)]!N!} \\ &\approx \frac{n!}{k!(n-k)!} \frac{(N\theta)^k(N(1-\theta))^{n-k}}{N^n} = \binom{n}{k} \theta^k (1-\theta)^{n-k}. \end{split}$$

16 / 21

Timo Koski () Matematisk statistik 20.01.2010

Approximation, Hyp(N, n, p)

Proposition

If X is $\operatorname{Hyp}(N, n, p)$ -distributed with $n/N \leq 0.1$ then X is approximatively $\operatorname{Bin}(n, p)$.

Timo Koski () Matematisk statistik 20.01.2010 17 / 21

By Helly's theorem (? see e.g. R. Ash: Real Analysis and Probability) there exists a subsequence $\Pi_{N_1}, \Pi_{N_2}, \ldots$ such that

$$\lim_{j\to\infty}\Pi_{\mathit{N}_j}=\Pi$$

where π is a distribution function. We have proved the assertion as claimed.

Interpretations of the Representation Theorem

The interpretation of this representation theorem is of profound significance from the point of view of subjectivistic modelling. It is as if:

- the x_i are judged independent Be (θ) conditional on the random quantity θ .
- ullet itself is assigned the probability distribution Π
- by the law of large numbers

$$\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i,$$

so that $\boldsymbol{\Pi}$ can be seen as 'beliefs about the limiting frequency of ones'.

Timo Koski () Matematisk statistik 20.01.2010 19 / 21

A Corollary: Predictive Probability

Assume n > m

$$p(x_{m+1}, x_{m+2}, \dots, x_n | x_1, x_2, \dots, x_m)$$

$$= \frac{p(x_1, x_2, \dots, x_n)}{p(x_1, x_2, \dots, x_m)}$$

$$= \int_0^1 \prod_{i=m+1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} d\Pi(\theta | x_1, x_2, \dots, x_m),$$

where

$$d\Pi\left(\theta|x_{1},x_{2},\ldots,x_{m}\right) = \frac{\prod_{i=1}^{m} \theta^{x_{i}} \left(1-\theta\right)^{1-x_{i}} d\Pi\left(\theta\right)}{\int_{0}^{1} \prod_{i=1}^{m} \theta^{x_{i}} \left(1-\theta\right)^{1-x_{i}} d\Pi\left(\theta\right)}$$

which again shows the role of Bayes formula in predictive probability.

Timo Koski () Matematisk statistik 20.01.2010 20 / 21

Interpretations of the Representation Theorem

The interpretation of this representation theorem is of profound significance from the point of view of subjectivistic modelling. It is as if:

• there is no true parameter, only data and judgement

