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Nature of the Lecture

The lecture deals with personalistic probability modelling by De Finetti's
theorem.

D. Heath & W. Sudderth: de Finetti's Theorem on Exchangeable
Variables. The American Statistician , vol. 30, 4, pp. 188—189.
(JSTOR) http://www.jstor.org/
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Exchangeability

Definition

An infinite sequence of random variables (X1, Xa,..., Xy, ...) Is said to be
infinitely exchangeable under probability measure p, if the joint
probability of every finite subsequence (Xp,, Xn,, ..., Xn,) satisfies

d
(anr Xngr cee /Xnk) = (Xr(nl)/XT(ng)/ cee /Xr(nk))

for all permutations T defined on the set {1,2,3,...,k}.
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Personal Probability: Exchangeability

@ Even the probability p is called exchangeable.

@ The notion of exchangeability involves a judgement of complete
symmetry among all the observables (‘potentially infinite number of
observables') under consideration. An infinite sequence of random
variables (X1, X2,..., Xy, ...) is judged to be infinitely
exchangeable.
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Personal Probability: Exchangeability

Next we state and prove a famous representation theorem due to Bruno de
Finetti. We prove it for a binary process. The proof below is due to Heath
& Sudderth. There are several completely general proofs, see, e.g.,
(Schervish, Theory of Statistics, 1995). In a latter part of the lecture we
use a key result proved found in R. Durrett: Probability: Theory and
Examples. Second Edition. Duxbury Press, 1996, by a technique of reverse
martingales, then completed by an more abstract measure theory
argument from Schervish.

de Finetti- theorem is, as such, a result in probability theory. We include
this in a course on statistical inference, because the theorem is a
cornerstone of of Bayesian statistical inference, and is a critique of
objectivistic modes of statistical inference.
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Exchangeability: The Representation Theorem

Proposition

Let (X1, Xa,...,Xn,...) be an infinitely exchangeable sequence of binary
random variables with probability measure p.

Then there exists a distribution function I1 such that the joint probability
p (X1 =x1,Xo =xp,...,Xn = Xxn) has the form

1 n
p(Xi=x1,X=x,...,.Xs=x2) = [ []09(1—0)"*I1(dB),
0 j=1
where I1 is the distribution function

I1(0) :JLn;oP<%ix;§0)

i=1
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Proof of the Representation Theorem

We set for ease of writing
p(x1,x2,...,xn) =p (X1 =x1,X0=x0,...,Xp = Xn).
Suppose that x1 + ...+ x, =y, € {0,1,...n}. Then exchangeability gives
pP(X1+...+Xn=yn) = < }Z, > P (Xe(1), X (2)s - - - » Xa(m))

for any permutation T of {1,2,...,n}, i.e,

P (Xe(1)y Xe(@)s -+ - s Xe(m)) = < >p(x1—|—...+x,, = Yn)- (1)
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Proof of the Representation Theorem

For arbitrary N > n >y, > 0 we have by marginalization
p(x1 +...4xn = yn)

N—(n—yn)
= Y plat..txa=yalxatxt...txy=yn)px1t...+xy=yN)
YN=Yn

N —
veon (5 )(5)
a YN=Yn ( N )
n

plxa+...+xy=yn)
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Proof of the Representation Theorem

The expression above for

N—(n=yn)
plat...txn=ynlxa+...+xy=yn)p(a+...+xy = yn)
yN=Yn

can be argued as follows. It follows by the assumption of exchangeability that given the event {x; + ...+ xy = yy}, all possible

rearrangements of the y, cases of ones in among the n places are equally likely.
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Proof of the Representation Theorem

Thus we can think of an urn containing N items, of which yy are ones, and N — yp are zeros. We pick n items without

replacement. Then
( YN )( N —yn >
Yn n—yn
( " )
n

is the probability of obtaining y, ones and n — y, zeros, and the probability function of a hypergeometric distribution

Hyp(N,n,yy), c.f. G. Blom, G. Englund et.al. kap. 7.3.)
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Proof of the Representation Theorem

(o) (o)
(%)
:< ;, > YNy, (:VN;HYN)nfy,,l

where

(N)n=N-(N=1)-(N=2)---(N=(n—1)) =

(N —n)!

so that (yn),, =yn (yv —1)- - (yn = (yn — 1)) etc.
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Proof of the Representation Theorem

In other words, by (1) we have

1
()
)

Yn

p (XT(l),XT(2),...,XT(n)) = p(x1+...+Xxn=Yn)

p(x1+...+xnv=yn)
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Proof of the Representation Theorem

We define the function Iy (0), as a step function which is zero for 6 < 0
and has jumps of size p(x1 +x2+...+xy = yn) at 0 = yn/N,
yw=01,...N.
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Proof of the Representation Theorem

Thus we have
p(x1+...4+xy=Yyn)

() [ OOy
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Proof of the Representation Theorem: basic probability

As N — oo
(ON),, (1 —-0)N)

(N)n

uniformly in 6. (Approximation of a hypergeometric probability by a
binomial probability, c.f., G. Blom, G. Englund et.al. kap. 7.3.)

n=yn _, 6" (1 — )" In
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Approximation, Hyp(N, n, p) (an argument due to Jan

Grandell)

(BN e N(1—0)! (N — n)!
(M) T K(N6— k) (n— KN —6) —(n— K] NI
n! NOI(N(L — 6)!(N — n)!

Ki(n— k) (N6 — K)I[N(1 —8) — (n — k)]IN!

n! (Ne)k(N(l - 9))n—k — <Z> 9/((1 . G)nfk.

Matematisk statistik 20.01.2010



Approximation, Hyp(N, n, p)

Proposition

If X is Hyp(N, n, p)-distributed with n/ N < 0.1 then X is approximatively
Bin(n, p).
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Proof of the Representation Theorem

By Helly's theorem (? see e.g. R. Ash: Real Analysis and Probability)
there exists a subsequence IIy,, ITp,, ... such that

lim [Ty, = I1

J—0

where 7T is a distribution function. We have proved the assertion as

claimed.
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Interpretations of the Representation Theorem

The interpretation of this representation theorem is of profound significance from
the point of view of subjectivistic modelling. It is as if:

@ the x; are judged independent Be () conditional on the random quantity 6.
@ 0 itself is assigned the probability distribution I'T

@ by the law of large numbers
1 n
0= Jim, ) L%

so that IT can be seen as 'beliefs about the limiting frequency of ones'.
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A Corollary: Predictive Probability

Assume n > m
P (Xm+1/Xm+2/ e /XI7|X1/X2/ e /Xm)
— p (X11X2r' . -/Xn)
p (X1/X2/ .. '/Xm)

1 n
:/ [T 0% (1—0) % dIl(O]x, x2, .., Xm),
0 j=m+1

where

m _oxi (1 — 01X JI1 (6
dI1(0)x1, %0, -, Xm) = 11—1171 ( ) — (6)
Jo TI, 6% (1 —6)" " dI1(6)

which again shows the role of Bayes formula in predictive probability.
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Interpretations of the Representation Theorem

The interpretation of this representation theorem is of profound
significance from the point of view of subjectivistic modelling. It is as if:

@ there is no true parameter, only data and judgement
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