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1 Calculation of moments

Theorem: If T ≥ 0 has the distribution function F (t), t ≥ 0 then we have if
E(T r) <∞ that

E(T r) = r

∫
∞

0

tr−1(1− F (t))dt

2

Proof: T has the density f(t) = F ′(t) and

E(T r) =

∫
∞

0

trf(t) = (partial integration) =

∣∣∣∣
∞

0

tr(F (t)− 1)−
∫

∞

0

rtr−1(F (t)− 1)dt.

But since E(T r) <∞ we have

∫
∞

A

trf(t)dt→ 0 when A→ ∞

and we get ∫
∞

A

trf(t)dt ≥ Ar

∫
∞

A

f(t)dt = ArP (T > A).

Therefore we have Ar(1− F (A)) → 0 when A→ ∞, i.e. the first part is 0.2

Useful formulas are

E(T ) =

∫
∞

0

(1− F (t))dt and E(T 2) = 2

∫
∞

0

t(1− F (t))dt.

We let 1− F (t) = R(t) = P (T > t) and R(t) is called the survival function.
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2 Failure rate

We have

P (x < T ≤ x+ h|T > x) =
P (x < T ≤ x+ h)

P (T > x)
=
F (x+ h)− F (x)

R(x)
≈ f(x)h

R(x)
.

We therefore define the failure rate as this proportionality factor.

λ(x) =
f(x)

R(x)
,

and the interpretation is that P (x < T ≤ x+h|T > x) ≈ λ(x)h i.e. λ(x) is the
probability /time unit for failures at time x when the component has survived
until the time x.
Since

λ(x) =
f(x)

R(x)
= − d

dx
ln(R(x)),

we see that

R(x) = exp(−
∫ x

0

λ(u)du) and − ln(R(x)) =

∫ t

0

λ(u)du.

For the Exp(λ)-distribution we have the density f(x) = λe−λx and the survival
function R(x) = e−λx implying λ(x) = λ, i.e the failure rate is constant.

If the life length has a Weibull-distribution, i.e. has the survival function
R(x) = exp(−(λx)c) we get the density f(x) = cλcxc−1 exp(−(λx)c) and we
have the failure rate λ(x) = cλcxc−1. This decreases in x if 0 < c < 1 and
increases in x if c > 1. For c = 1 it is constant and this corresponds to the
exponential distribution.

3 Increasing and decreasing failure rate – IFR

and DFR

We say that the distribution has increasing failure rate or is IFR (Increasing
Failure Rate) if the failure rate λ(x) increases in x. In the same manner we
define DFR (Decreasing Failure Rate) if λ(x) decreases in x.

A more general definition is to say that the distribution is IFR if − ln(R(t))
is convex in t. Convex functions lie under their cordasm i.e. they lie under
straight lines between points on the curve.

Unfortunately a system consisting of independent components which are IFR
may not have an increasing failure rate. We define the class
IFRA (A for Average) if

1

t

∫ t

0

λ(u)du increases in t.
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We will late see that systems made from independent IFRA-components are
IFRA.

Theorem: IFR⇒ IFRA

Proof 1: Let t1 ≤ t2. The distribution is IFR means that λ(t1) ≤ λ(t2). We
want to prove that

1

t1

∫ t1

0

λ(u)du ≤ 1

t2

∫ t2

0

λ(u)du.

We get

1

t2

∫ t2

0

λ(u)du = (change of variable v =
t1
t2
u) =

1

t1

∫ t1

0

λ(
t2
t1
v)dv ≥

≥ (ty t2/t1 ≥ 1 and λ(u) increasing) ≥ 1

t1

∫ t1

0

λ(v)dv

2

Proof 2: We assume that − ln(R(t)) is convex. It starts in 0 since R(0) = 1
and therefore (draw a figure)

− ln(R(t1)) ≤
t1
t2
(− ln(R(t2)))

which easily implies

1

t1

∫ t1

0

λ(u)du ≤ 1

t2

∫ t2

0

λ(u)du

since ln(R(t)) = −
∫ t

0
λ(u)du. 2

4 Memorylessness for the exponential distri-

bution

For the exponential distribution Exp(λ) we have the failure rate λ(t) = λ, i.e.
is does not depent on t. The exponetial distribution is the only distribution
which satisfies this. We see this since the distribution is determined by the
failre rate.
We have an interesting memorylessness property for the exponential distribu-
tion:

P (T > x+ y|T > x) =
P (T > x+ y;T > x)

P (T > x)
=
P (T > x+ y)

P (T > x)
=

e−λ(x+y)

e−λx
= e−λy = P (T > y).
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This can be interpreted as follows: A component that has an exponential dis-
tribution does not age – if it has survived until time x the probability that is
will function at least y time units more, is the same as the probability that a
new component will function at least y time units. This follows from the fact
that the failure rate is constant. It is therefore idiotic to change a component
with exponential life length since the ”old” component is just as good as the
”new” one.

An alternative way of expressing this equality is to use the definition of con-
ditional probability and write is as P (T > x+ y) = P (T > x)P (T > y).

5 The classes NBU and NWU

We define a class of distributions NBU (New Better than Used) for distribu-
tions where we gain something by switching a used component.

Definition: The distribution is called NBU if P (T > x+y) ≤ P (T > x)P (T >
y).

In conditional form we write this as P (T > x+ y|T > x) ≤ P (T > y) i.e. with
the interpretation that we have a greater probability of no failure in y time
units if we switch to a new component. It pays off if we have strict inequality.

There is a dual class NWU (New Worse than Used) if the inequality goes the
other way.

If the life length of the component is NWU it is stupid to switch since a new
component is worse that the ”old” one. This should of course not be interpreted
as if the component get better as time goes by, but in stead the population
initially consists of both good and bad components. As time passes without
the component failing we obviously have got a good component. If we replace
it with a new one we run the risk of installing a bad component.

Sats: IFRA⇒ NBU

If the distribution is IFRA we have (for x, y > 0)

1

x+ y

∫ x+y

0

λ(u)du ≥ 1

x

∫ x

0

λ(u)du

We now assume that y ≤ x (otherwise we interchange them). We get

∫ x+y

0

λ(u)du ≥ x+ y

x

∫ x

0

λ(u)du =

∫ x

0

λ(u)du+
y

x

∫ x

0

λ(u)du ≥ (ty IFRA and x ≥ y)

∫ x

0

λ(u)du+
y

y

∫ y

0

λ(u)du =

∫ x

0

λ(u)du+

∫ y

0

λ(u)du.

This yields P (T > x+ y) ≤ P (T > x)P (T > y), i.e. it is NBU .

Therefore we have IFR ⇒ IFRA⇒ NBU and DFR⇒ DFRA⇒ NWU .
There are counterexamples if we try to change the implications.
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6 The Poisson-process

We want to produce a model for the concept ”event which occur completely
ramdomly in time”. We divide the interval (0, t] in n = t/h intervals of length
h each. The idea is to let h→ 0.

a) In each such interval we assume that the probability for an event is λh+o(h),
i.e. in principle proportional to the interval length. o(h) denotes a remainder
term which is smaller in magnitude than h.

b) In each such intervalthe probability for no occurrance is 1− λh+ o(h)

c) The probability of 2 or more occurrances in an interval is o(h) and can
therefore be ignored.

d) The number of occurances in disjoint interval are independent.

LetX(t) =the numer of occurrances in the interval (0, t]. We have the standard
situation for the binomial distribution and therefore X(t) is Bin(n, λh+ o(h))
which is approximately Po(nλh) = Po(λt). In the same manner we se that the
number of occurrances in the interval (s, t] is Po(λ(t − s)). We also see that
the increments on disjoint time intervals are independent of each other.
If we let T =time until the first occurrance we get

P (T > t) = P (X(t) = 0) = e−λt

and therefore the time until the first occurrance is Exp(λ). The times between
occurances are indpoendent Tiderna mellan händelserna är oberoende Exp(λ)-
distributed random variables. If we let

Sn = T1 + T2 + · · ·+ Tn = time until the n:th occurrance

we get in the same manner

P (Sn > t) = P (X(t) ≤ n− 1) =
n−1∑

k=0

(λt)k

k!
e−λt.

If we take the derivative with respect to t the expression cancels out and we
get

fSn
(t) =

λntn−1

(n− 1)!
e−λt.

which is called the Γ(n, λ)-distribution. It can therefore be interpreted as the
distribution of the sum of n independent Exp(λ)-distributed random variables
T1, T2, . . . , Tn.

7 Analysis of life length data

We will in this section analyze data on life lengths X1, X2, . . . , Xn for n iden-
tical components where we let the Xi:s be independent and identically distri-
buted. Sometimes we have complete data, sometimes only ”censored” data,
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i.e. just some of the life lengths. E.g. we can imagine that the experiment is
stopped at a fixed time t0 (Type I-censoring) or that the test is stopped when
we observe r failures (Type II-censoring).

We shall produce the so-called TTT -plot and the TTT -transform but also
estimate the failure rate (if we assume it is constant) and we will also estimate
the survival function.

Let X1, . . . , Xn be the lifelengths of n components which we assume are inde-
pendent and identically distributed. Let X(1), X(2), . . . , X(n) be these sorted
in increasing size. Therefore X(1) is the smallest of X1, X2, . . . , Xn and X(2)
the second smallest etc untill X(n) which is the largest. These X(i) are called
the ordes statistics.

We assume that F has a density and is strictly increasing and that E(Xi) = θ.

Definition: The Total Time on Test at time x where X(i) ≤ x < X(i+ 1) is

T (x) =
i∑

j=1

X(j) + (n− i)x.

2

The first term is the testing time of those components which have failed before
time x and the last term (n − i)x is the testing time for the components
which have survived past time. If we have numerical data we denote them
x1, x2, . . . , xn which we will see as outcomes of random variablesX1, X2, . . . , Xn

but we will feel free to switch between these as feel appropriate.

We have

T (X(i)) =
i∑

j=1

X(j) + (n− i)X(i)

and in particular T (X(n)) =
∑n

j=1X(j) =
∑n

j=1Xn. Therefore we have

T (X(n))/n = X̄ .
The relative test time when the i:th failure occurs is

T (X(i))

T (X(n))

and the TTT-plotis a plot of (i/n, T (X(i))/T (X(n))). We will show that

1) If data is from an exponential distribution the TTT -plot is approximately
linear.

2) If data is from an IFR-distribution the TTT -plot is approximately concave.

3) If data is from a DFR-distribution the TTT -plot is approximately convex.

The word ”approximately” is used since we have a certain randomness in the
TTT-plot.
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8 More properties of the exponential distribu-

tion

If we know that X(a) = 1 we know that one event has occurred somewhere
during the time interval (0, a]. Letting T =time for the first occurrance we get
for 0 ≤ t ≤ a

P (T ≤ t|X(a) = 1) =
P (T ≤ t;X(a) = 1)

P (X(a) = 1)
=

P (X(t) = 1;X(a) = 1)

P (X(a) = 1)
=
P (X(t) = 1;X(a)−X(t) = 0)

P (X(a) = 1)
=

(independence for dijoint intervals) =
P (X(t) = 1)P (X(a)−X(t) = 1)

P (X(a) = 1)
=

λte−λte−λ(a−t)

λae−λa
=
t

a
,

which means that T |X(a) = 1 is uniformly distributed U(0, a). In the same
manner we can show that if we have n occurrances on the interval (0, a] these
times have the same distribution as the order statistics for n independent
uniformly distributed independent random variables. Therefore the times occur
completely randomly in the interval.

Theorem: If Xi is Exp(λi) for i = 1, 2, . . . , n and independent
then T = min(X1, X2, . . . , Xn) is exponentially distributed Exp(

∑n
1 λi). 2

Proof:

P (T > t) = P (min(X1, X2, . . . , Xn) > t) = P (X1 > t;X2 > t; . . . ;Xn > t) =

(independence) = P (X1 > t)P (X2 > t) . . . P (Xn > t) =

exp(−λ1t) exp(−λ2t) . . . exp(−λnt) = exp(−t
n∑

i=1

λi),

which shows that T is Exp(
∑n

1 λi). 2

The intensities in the exponential distributions add up when we form the
minimum of independent exponential distributions.

One can also show that if L = numbe rof the one which is the smallets we have
P (L = j) = λj/

∑n
1 λi and that L (surprisingly enough) is independent of T .

Theorem: If X1, X2, . . . , Xn are independent Exp(λ) then T (X(i))/T (X(n))
for i = 1, 2, . . . , n−1 are distributed as the order statistics U(1), U(2), . . . , U(n−
1) of n− 1 independent U(0, 1)-distributed U1, U2, . . . , Un−1. 2

Sketch of proof: Note that X(1) is the minimum of n independent Exp(λ)-
distributed variables and therefore isExp(nλ). Furthermore we have T (X(1)) =
nX(1) so T (X(1))−0 is Exp(λ). In the same manner we see thatX(2)−X(1) is
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the minimum of n−1 independent Exp(λ) and therefore T (X(2))−T (X(1)) =
(n− 1)(X(2)−X(1)) is Exp(λ) etc. We see thatatt

T (X(1)), T (X(2))− T (X(1)) . . . , T (X(n))− T (X(n− 1)) etc

are independent Exp(λ) and therefore T ((X(j)) is distributed as the sum of j
independent Exp(λ) and therefore consist of the times for the successive events
in a Poisson process. If we fix T (X(n)) = a we can use the result above to see
that we should place n− 1 events in the interval (0, a]. 2

From this we see:

E(
T (X(i))

T (X(n))
) =

i

n

and we can show that the variance is small. This means that

T (X(i))/T (X(n)) ≈ i/n.

For the exponential distribution the TTT -plot should give approximately a
straight line. This can be used as a graphical test of whether the data come
from an exponential distribution.

9 Empirical distribution

With data x1, x2, . . . , xn which are outcomes of independent identically distri-
buted variables X1, X2, . . . , Xn we place the probability mass 1/n in each of
the points x1, . . . , xn. If 2 xi:s are identical we get the mass 2/n in that point,
etc. This distribution is called the empirical distribution and we denote its
distribution function by Fn(x). If n is large it resembles the true distribution
F of the Xi:s, i.e. we have Fn(x) ≈ F (x). Formally we have

Fn(x) =





0 if x < x(1)

i/n if x(i) ≤ x < x(i+ 1)

1 if x > x(n)

We now have the following theorem which connects the TTT -plot with the
empirical distribution.

Theorem: We have

T (x(i)) = n

∫ x(i)

0

(1− Fn(u))du.

Proof: From a graph we see that the area under Fn(x) up to time x(i) is

1

n

i∑

k=1

(x(i)− x(k)) =
i

n
x(i)− 1

n

i∑

k=1

x(k),
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where we calculate the area as the sum of the horizontal strips. The areas
under 1− Fn(x) up to x(i) is

x(i) · 1− Area under Fn up to x(i)

and therefore

n

∫ x(i)

0

(1− Fn(u))du = nx(i)− ix(i) +

i∑

j=1

x(j) = T (x(i)).

If we now let n→ ∞ so we have Fn close to F and take i/n = v with 0 ≤ v ≤ 1
we see that x(i) → F−1(v), i.e. the v-fractile in the distribution. We get

T (x(i))

n
→

∫ F−1(v)

0

(1− F (u))du.

In particular with v = 1 i.e. i = n we get F−1(v) = ∞ and the left hand side is
x̄ while the right hand side is E(X) corresponding to the law of large numbers.

Definition: The TTT -transform of a distribution is

H−1
F (v) =

∫ F−1(v)

0

(1− F (u))du.

In particular H−1
F (1) is the expected value of the distribution F . 2

The scaled TTT -transform is H−1
F (v)/H−1

F (1).

Example: If F (x) = 1 − e−λx, i.e. the Exp(λ)-distribution we get the inverse
function F−1 by solving for x in y = F (x). We get x = − 1

λ
ln(1 − y) so

F−1(v) = − 1
λ
ln(1− v). We have

H−1
F (v) =

∫
−

1

λ
ln(1−v)

0

e−λudu = v/λ.

Since H−1
F (1) = 1/λ we get H−1

F (v)/H−1
F (1) = v for 0 ≤ v ≤ 1. 2

Theorem: I F is continuous and strictly increasing we have

d

dv
H−1

F (v)

∣∣∣∣
v=F (x)

=
1

λ(x)

where λ(x) is the failure rate, i.e. λ(x) = F ′(x)/(1− F (x)). 2

Proof: If we let G(y) =
∫ y

0
(1 − F (u))du we have G′(y) = 1 − F (y) so by the

chain rule
d

dv
G(F−1(v)) = G′(F−1(v))

d

dv
F−1(v),
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but u = F−1(v), i.e. v = F (u) so dv = F ′(u)du and therefore

d

dv
F−1(v) =

du

dv
= 1/F ′(u) = 1/F ′(F−1(v)).

In all this yields (with f = F ′)

d

dv
H−1

F (v) = (1− F (F−1(v)))
1

f(F−1(v))
=

1− v

f(F−1(v))
.

Letting v = F (x) we get

d

dv
H−1

F (v)

∣∣∣∣
v=F (x)

=
1− F (x)

f(x)
=

1

λ(x)
.

2

Therefore we get the following theorem

Theorem:
F is IFR if and only if H−1

F (v) is concave
F is DFR if and only if H−1

F (v) is convex. 2

Theorem: F is IFR ⇔ λ(x) increases in x ⇔ 1/λ(x) decreases in x ⇔
d
dv
H−1

F (v)|v=F (x) decreases in x ⇔ d
dv
H−1

F (v) decreases in v ⇔ H−1
F (v) is con-

cave. 2

If we now estimate H−1
F from data using the empiriska distribution function

and let

H−1
n (v) =

∫ F−1
n (v)

0

(1− Fn(u))du,

we get since F−1
n (i/n) = x(i) and since, as previously shown, T (x(i)) =

n
∫ x(i)

0
(1− Fn(x))dx so we get

H−1
n (i/n)

H−1
n (1)

=
T (x(i))

T (x(n))

and we see that the TTT -plot is concave if the distribution is IFR and convex
if the distributiojn is DFR. We can use the empirical TTT -plot to decide if
the distribution is IFR, DFR or neither. If it has an S-shape it is neither IFR
not DFR. The bathtub curve corresponds to the TTT -plot first being convex,
then linear and then concave. Note though that the randomness in data can
destroy this nice pattern.

10 Estimation of failure rate

We now assume that the life lengths are exponentially distributed Exp(λ) and
we want to estimate the failure rate λ and calculate confidence intervals for
this parameter.
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We have the density function f(x)λe−λx, x > 0. We get from observed data
x1, x2, . . . , xn the likelihood-function

L(λ) = f(x1)f(x2) . . . f(xn) = λn exp(−λ
n∑

i=1

xi)

and by taking logarithms

lnL(λ) = n ln(λ)− λ

n∑

i=1

xi

showing
d

dλ
lnL(λ) =

n

λ
−

n∑

i=1

xi,

so maximum is produced by λ = n/
∑n

i=1 xj . Therefore the ML-estimate of λ

λ∗ =
1

X̄
=

n∑n
i=1Xi

=
n

T (X(n))
.

We know that T (X(n)) =
∑n

1 Xj is Γ(n, λ), i.e. has the density

fT (X(n))(t) =
λntn−1

(n− 1)!
exp(−λt).

Itg is suitable to introduce the Γ-function

Γ(x) =

∫
∞

0

tx−1e−tdt

where we can easily show that for positive integers n we have Γ(n) = (n− 1)!.
We therefore get with Y =

∑n
1 Xi

E(λ∗) = E(
n∑n

i=1Xi
) = nE(

1

Y
) = n

∫
∞

0

λnyn−1e−λy

yΓ(n)
dy =

nλ

Γ(n)

∫
∞

0

(λy)n−2e−λyλdy = (change of variable λy = t) =

nλ

Γ(n)

∫
∞

0

tn−2e−tdt =
(n− 2)!nλ

(n− 1)!
=

n

n− 1
λ.

Hence λ∗ is not unbiased but asymptotically unbiased. The estimate

λ̂ =
n− 1

T (X(n))

is therefore unbiased. Using the same technique we can show that

V (λ̂) =
λ2

n− 2
.
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11 Confidence interval using complete data

Theorem:

a) X is Exp(λ) ⇔ λX is Exp(1).

b) Y ia Γ(n, 1) ⇔ 2Y is χ2(2n). 2

Proof: a) P (λX > x) = P (X > x/λ) = exp(−λx/λ) = exp(−x).
b) The χ2(f)-distribution has the density

xf/2−1e−x/2

Γ(f/2)2f/2
, for x > 0,

which proves it since P (2Y ≤ x) = P (Y ≤ x/2) and taking derivatives

f2Y (x) = fY (x/2)/2 =
(x/2)n−1

2Γ(n)
exp(−x/2).

2

This means that we do not need to have a table of percentiles for the Γ-
distributions but canuse the tables for the χ2-distributions. In Matlab we have
the Γ-distribution percentiles using the function gaminv, but since this is in
the Stats-module we may not have access to it.

If X1, X2, . . . , Xn are independent Exp(λ) we have

2λ

n∑

i=1

Xi är χ
2(2n).

Therefore

1− α = P

(
χ2
1−α/2(2n) ≤ 2λ

n∑

i=1

Xi ≤ χ2
α/2(2n)

)
,

which produces a confidence interval for λ with the confidence lever 1− α

(
χ2
1−α/2(2n)

2
∑n

i=1 xi
,
χ2
α/2(2n)

2
∑n

i=1 xi

)
=

(
χ2
1−α/2(2n)

2T (x(n))
,
χ2
α/2(2n)

2T (x(n))

)
.

Note that if we want a confidence interval for m = 1/λ we only have to take
1/the limits above. In general we see that if we have a confidence interval for a
parameter θ and want a confidence interval for ψ = g(θ) where g is a monotone
(increasing or decreasing function) we just takes g of the limits in the interval
for θ. Possible the limits can be switched as for 1/λ above.

12 Censored data

We describe 4 different types of censoring, i.e. situations where we do not have
complete data.
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Type I-censoring: The test is ended at a fixed time t0.

Type II-censoring: The test is ended when we have r failures in the units, i.e.
at time X(r).

Type III-censoring: The test is ended at min(t0, X(r)), i.e. at time t0 or (if it
occurs earlier) when r have failed.

Type IV-censoring: Independent stochastic censoring of the units, i.e. each
observation is censored randomly. For a censored observation we only know
that the life length is larger than the censoring time.

We will in this section treat Type I and Type II.We will also for these study
two cases:

a) With replacement where failed components are replaced by new components.

b) Without replacement where failed components are not replaced.

We are interested in the total time on test TTT , since it can be used for
estimation.

Type IV-censoring is treated in the next section which treats estimation of
survival function and failure rate.

12.1 Type II censoring without replacement

The test is stopped when r units have failed. We therefore observe x(1), x(2), . . . , x(r)
where r is fixed. The rest of the units are censored – we only know that they
fail after X(r) when the test was stopped. We therefore have r failures in n
tested units and the failed units have not been replaced. The total time on test
is

T =
r∑

j=1

x(j) + (n− r)x(r).

We observe the r smallest of x1, . . . , xn and for the remaining n − r we only
observe that they are greater that the r:th largest, i.e. x(r). The likelihoodfun-
ction consists first of the product of the densities in x(1), x(2), . . . , x(r) and
second the probability that the remaining n−r are greater than x(r). This last
probability is P (Xi > x(r)) = exp(−λx(r)) and we get the likelihoodfunction

L(λ) = λr exp(−λ
r∑

j=1

x(j)) exp(−λ(n− r)x(r)) = λr exp(−λT (x(r)))

where (as before) T (x(r)) is the total time on test up to the r:th failure. The
ML-estimate is

λ∗ =
r

T (x(r))
,

where T (X(r)) =
∑r

j=1X(j) + (n − r)X(r). The time from 0 to X(1) is the
minimum of n independent Exp(λ) and is therefore Exp(nλ). In the same
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manner X(2) − X(1) is the minimum of n − 1 independent Exp(λ) and is
therefore Exp((n − 1)λ). In general Dj = X(j) − X(j − 1) is the minimum
of n − j + 1 independent Exp(λ) and is therefore Exp((n − j + 1)λ) for j =
1, 2, . . . , r. But

T (X(r)) = nD1 + (n− 1)D2 + · · ·+ (n− r + 1)Dr

and this means that λT (X(r)) is Γ(r, 1). We have (as for complete data) that
2λT (X(r)) is χ2(2r). We also see that λ∗ is not unbiased but that E(λ∗) =
rλ/(r − 1). We get the same type of confidence interval for λ as for complete
data with minor modifications

(
χ2
1−α/2(2r)

2T (x(r))
,
χ2
α/2(2r)

2T (x(r))

)
.

12.2 Type II-censoring with replacement

We have total test time T (x(r)) = nx(r) since all n sockets are filled all the
time until we stop the test when r failures have been observed. The times
between failurs (Dj = X(j)−X(j− 1) for j = 1, 2, . . . , r) are the minimum of
n independent Exp(λ) and therefore Exp(nλ) and the total time on test can
be written

T (X(j)) = n(D1 +D2 + · · ·+Dr).

Again we see that T (X(r)) is Γ(r, λ) and therefore 2λT (X(r)) is χ2(2r). We
get the same confidence interval as in the previous case.

12.3 Type I censoring with replacement

As soon as a unit has failed it is replaced with a new one. Therefore we have n
units under testing the whole time. The total time on test is therefore T = nt0.
The number of observed failures is s which is random.

We get the ML-estimate λ∗ = s/(nt0) where s is the number of observed failu-
res. Note that s is random and an outcome of S which is Po(λnt0). Therefore
λ∗ is unbiased since E(S) = λnt0. Furthermoe we have V (S) = λnt0 which is
estimated by λ∗nt0 = s and we get the standard error d(s) =

√
s.

We could do an approximate confidence interval by using a normal approxima-
tion of the Poisson distribution and get the approximate interval s ± λα/2

√
s

for λnt0 i.e. the interval
s

nt0
± λα/2

√
s

nt0
for λ at least if s is large, e.g. s ≥ 15.

Often we will ignore the fact that the censoring is of type I and use the confi-
dence interval for Type II censoring, i.e

(
χ2
1−α/2(2s)

2T (x(s))
,
χ2
α/2(2s)

2T (x(s))

)
,

which has the approximate confidence level 1− α.
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12.4 Type I-censoring without replacement

The test i stopped at time t0. Of the n units being tested we have s (random
number) failure. We observe X(1), X(2), . . . , X(s).

We have the total time on test

T (X(S)) =

S∑

j=1

X(j) + (n− S)t0

where S is the random number of failures we observe before time t0. The
estimate λ∗ = s/T (x(s)) is approximately unbiased. To calculate an exact
confidence interval is tricky but we will do the same as for Type I-censoring
with replacement, i.e. ignore the fact that the number of failures is random
and again take the interval

(
χ2
1−α/2(2s)

2T (x(s))
,
χ2
α/2(2s)

2T (x(s))

)
.

13 Estimates of the survival function

13.1 Complete data

With complete data x1, x2, . . . , xn we estimate the underlying distribution with
the empirical distribution Fn(x), i.e. the distribution which put the mass 1/n

in each observation. The survival function is estimated by R̂(x) = 1− Fn(x).

We will now treat data with censoring of Type IV and will give two different
estimates, the Kaplan-Meier-estimate (often called the ”product limit estima-
tor”) and also the Nelson-estimator.

13.2 The Kaplan-Meier-estimator

We assume that the censoring occurs at random times, i.e. that each individual
observation xi either is the actual time for the failure och is the time up to
which the component worked. We therefore have ordered observations x(1) ≤
x(2) ≤ · · · ≤ x(n) where some of them are censored. Let ν run through those
values j where x(j) is a time to failure and x(j) < x. The Kaplan-Meier-
estimator of the survival function is

R̂(x) =
∏

ν

n− ν

n− ν + 1
.

In order to explain this, we do the following. We imagine time between 0 and x
to be divided into a large number of short intervals 0 = u0, u1, u2, . . . , um = x.
We assume that this partition is so dense that only one of the individual
occurrances failure and censored observation occurs in each interval. We get

R(x) = P (X > x) = P (X > um) =

P (X > um|X > um−1)P (X > um−1|X > um−2) . . .

. . . P (X > u2|X > u1)P (X > u1|X > u0).
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We will estimate these factors in the following manner

a) In an interval where nothing happens we estimate it by 1.

b) If a censored observation occurs but no failure we also estimate the factor
by 1.

c) If we observe a failure and we had n−r+1 units working at the beginning of
the interval and n− r at the end we estimate the factor by (n− r)/(n− r+1).

We get

R̂(x) = 1 · 1 · 1 · n− ν1
n− ν1 + 1

· 1 · · · · 1 · n− ν2
n− ν2 + 1

· · · =
∏

ν

n− ν

n− ν + 1
,

where x(ν1), x(ν2), . . . are the times that components fail. If there are no cen-
sored observations this is identical to 1 − Fn(x). With censored observations
the estimated survival curve jumps downward at each observed failure time by
a factor which is the proportions of non-failed components of the remaining
components still working at that time.

13.3 The Nelson-estimator

We let Λ(x) =
∫ x

0
λ(u)du and see that R(x) = e−Λ(x) and therefore

Λ(x) = − ln(R(x)) = − ln(1− F (x)).

We will try to estimate Λ(x) from data. We star with a simple theorem

Theorem: Let X be continuous with strictly increasing distribution function
F . We have

a) U = F (X) is uniformly distributed on (0, 1).

b) Z = − ln(1− F (X)) is Exp(1)-distributed. 2

Proof: a) With 0 < x < 1 we get

P (U ≤ x) = P (F (X) ≤ x) = P (X ≤ F−1(x)) = F (F−1(x)) = x,

which is the distribution function for the uniform distribution on (0, 1).

b) With z > 0 we get

P (Z ≤ z) = P (− ln(1− F (X)) ≤ z) = P (1− F (X) ≥ e−z) =

P (F (X) ≤ 1− e−z) = P (U ≤ 1− e−z) = 1− e−z,

which means that Z is Exp(1). 2

Note that the transformation producing Z is the same that appeared above in
the expression for Λ(x). This means that we in a sense transform data so that
they correspond to order statitics for exponentially distributed variables.
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We start with complete data, i.e. no censoring. Let X1, X2, . . . , Xn be indepen-
dent all with the distribution F . The corresponding order statistics we denote
as X(1), X(2), . . . , X(n). We now form Zj = − ln(1 − F (Xj)) as in the theo-
rem above and note that the Zj :s are independent Exp(1). In the same way
let Z(j) = − ln(1− F (X(j))) be the order statistics for the Z:variables. They
are therefore order statistics for n independent Exp(1)-variables. We get

E(Z(j)) =
1

n
+

1

n− 1
+ · · ·+ 1

n− j + 1
.

This holds since Z(1) is the minimum of n independent Exp(1) and therefore
is Exp(n), and furthermore Z(2)−Z(1) is the minimum of n− 1 independent
Exp(1) and therefore is Exp(n− 1) etc.

Note that Λ(X(j)) = − ln(1 − F (X(j))) = Z(j) so that E(Λ(X(j))) =
E(Z(j)). We estimate Λ(x) by

Λ̂(x) =

j∑

i=1

1

n− i+ 1
when X(j) ≤ x < X(j + 1)

which gives approximately the ”correct” expected value, i.e. E(Λ̂(X(j))) =

E(Λ(X(j))). We then estimate R(x) by R̂(x) = e−Λ̂(x).

If we have censored data we modify this so that

Λ̂(x) =
∑

ν

1

n− ν + 1

where ν runs through those j where x(j) is a time of a failure and x(j) < x.

This means that Λ̂ increases at times of observed failures by 1/(number working

at that time). The survival function is estimated by R̂(x) = e−Λ̂(x). As for the

Kaplan-Meier-estimator we see that R̂ goes down by a certain factor at each
observed failure. This factor exp(−1/(n−ν+1)) where n−ν+1 is the number
working at that time. A simple Taylor expansion shows that

e−1/(n−ν+1) ≈ 1− 1

n− ν + 1
=

n− ν

n− ν + 1

which means that the Kaplan-Meier-estimate and the Nelson-estimate are qui-
te similar especially if the number of failures and censorings is small compared
with n.
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