
1 Interest rates and bonds

1.1 Compounding

There are different ways of measuring interest rates

Example 1 The interest rate on a one-year deposit is 10% per annum. This statement
means different things depending on the compounding frequency.

•With annual compounding it means that $100 grows to

$100 × (1 + 0.10) = $110

by the end of the year.

•With semiannual compounding it means that $100 grows to

$100 ×

(

1 +
0.10

2

)

×

(

1 +
0.10

2

)

= $110.25

by the end of the year.

•With compounding m times per year it means that $100 grows to

$100 ×

(

1 +
0.10

m

)m

by the end of the year.

•With continuous compounding (let m → ∞) it means that $100 grows to

$100 × e0.10·1 ≈ $110.5171

by the end of the year.

For most practical purposes continuous compounding can be thought of as being equi-
valent to daily compounding, which here means that $100 grows to

$100 ×

(

1 +
0.10

365

)365

≈ $110.5156

by the end of the year.

✷

Let rc be a rate of interest with continuous compounding (quoted annually) and Rm the
equivalent rate with compounding m times per year. Then

erc·1 =

(

1 +
Rm

m

)m

,

so

rc = m ln

(

1 +
Rm

m

)

and
Rm = m

(

erc/m − 1
)

.
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1.2 Zero coupon bonds and zero rates

As stated before the most basic interest rate derivatives are zero coupon bonds.

Definition 1 A zero coupon bond with $1 principal and maturity T is a T -claim paying $1

at time T .
The price at time t of the bond is denoted p(t, T ) and we will assume that p(T, T ) = 1.

Spot rates are defined from zero coupon bond prices. They are also known as zero coupon
bond rates, or zero rates.

Definition 2 The (continuously compounded) spot rate r(t, T ) at time t for the time interval

[t, T ] is defined by

p(t, T ) = e−r(t,T )(T−t)

or

r(t, T ) = −
ln p(t, T )

T − t
.

For each maturity T there exists a separate spot rate. The collection of all time t spot rates
{r(t, T ) : T = t, . . . ,∞} is referred to as the term structure (or zero coupon yield curve, or
zero curve, or yield curve) at time t.

Example 2 Given prices of zero coupon bonds

T p(0, T )

0.3 $0.9851
0.6 $0.9531
0.8 $0.9231

the term structure is
T r(0, T )

0.3 5%
0.6 8%
0.8 10%

✷

1.3 Money market account

Before the money market account, or risk less asset, has been given by

BT = erT (if B0 = 1)

where r has been constant, but now we will have (in discrete time)

Bt+∆t = Bte
r(t,t+∆t)·∆t

so if we divide the time interval [t, T ] into n intervals of size ∆t = (T − t)/n

BT = Bte
∑

n−1

i=0
r(t+i∆t,t+(i+1)∆t)·∆t

Here r(t, t+∆t) is the “over night” rate, and it is determined at time t.
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Example 3 Consider a three month investment of $10 in a money market account with
monthly capitalization (means that ∆t= 1 month = 1/12 year). Assume that the one month
rate is 5% per annum the first month, 5.5% the second, and 6% the third. Then

B3/12 = B0e
∑

3−1

i=0
r(0+i∆t,0+(i+1)∆t)·∆t

= 10 exp

{

r(0,
1

12
) ·

1

12
+ r(

1

12
,
2

12
) ·

1

12
+ r(

2

12
,
3

12
) ·

1

12

}

= 10e(0.05+0.055+0.06)· 1

12 = 10.1384.

Note that r(1/12, 2/12) and r(2/12, 3/12) are not really known at time t = 0! ✷

1.4 Fixed coupon bonds

Most bonds pay coupons to the holder periodically. The simplest coupon bond is the fixed
coupon bond. The formal description is as follows.

• Fix times T0, T1, . . . , Tn. Here T0 is thought of as the emission date of the bond and
T1, . . . , Tn as coupon dates.

• At time Ti, i = 1, . . . , n the owner of the bond receives the deterministic coupon ci.

• At time Tn the owner of the bond receives the principal (face value) K.

The coupon bond is simply a portfolio of zero coupon bonds. We have that the price of the
bond for t < T1 is

pfixed(t) =
n
∑

i=1

cip(t, Ti) +Kp(t, Tn). (1)

Often the coupons are determined in terms of return rather than monetary terms. The return
for the i:th coupon is typically quoted as a simple rate acting on the principalK over [Ti−1, Ti].

Here comes a small digression on simple rates. We have seen that the continuously compoun-
ded spot rate r(t, T ) for the interval [t, T ] solves

p(t, T ) = e−r(t,T )(T−t)

or

er(t,T )(T−t) =
1

p(t, T )
.

This is because an investment of $1 at time t can create a payoff of 1/p(t, T ) at time T . Just
buy 1/p(t, T ) T -bonds at time t, this will cost you exactly $1, and at time T you will get the
payoff 1/p(t, T ).
The simple spot rate for [t, T ], henceforth referred to as LIBOR spot rate solves

1 + L(t, T )(T − t) =
1

p(t, T )
,

and is defined as

L(t, T ) = −
p(t, T )− 1

(T − t)p(t, T )
.

The zero rates and LIBOR spot rates are thus used to express the same return, they are just
quoted in different ways.
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Back to the coupon bonds. A simple rate ri acting on K over [Ti−1, Ti] results in

K[1 + ri(Ti − Ti−1)]

and by definition if the i:th coupon has a return ri and the principal is K then

ci = Kri(Ti − Ti−1).

Remark 1 Recall that the rate Rm compounded m times per year makes $1 grow to
(

1 +
Rm

m

)m

by the end of the year. Over a period of 1/m years $1 grows to
(

1 +Rm ·
1

m

)

which is the simple rate for the period 1/m!

1.4.1 Determining zero rates by bootstrapping

Given market bond prices, how do we determine the zero coupon curve? Recall that most
traded bonds are coupon bonds, particularly for the longer maturities. Since the price of a
fixed coupon bond is made up of prices of zero coupon bonds, see Equation (1), which are in
turn determined by the zero rates, there is a one-to-one correspondence, between bond prices
and zero rates.
Starting from the short end of the term structure (that is short time to maturity) zero rates
are obtained from zero coupon bonds. When moving to longer maturities bonds are coupon
bonds, but now we can use that we have the short zero rates to back out the longer rates.

Example 4 Assume that in addition to the zero coupon bonds given in Example 2 there is
also a coupon bond traded. This bond pays a $5 annual coupon, has a principal of $100, and
matures in 1.6 years. The price of the coupon bond is $92.82.

We can use this bond to find the 1.6-year zero rate. The price is given by

pfixed(t) =
n
∑

i=1

cip(t, Ti) +Kp(t, Tn)

= 5e−r(t;t+0.6)0.6 + (5 + 100)e−r(t;t+1.6)1.6.

Now using that we know that pfixed = 92.82 and that r(t; t + 0.6) = 8%, we can solve for
r(t; t+ 1.6) and obtain

r(t; t+ 1.6) = −
1

1.6
ln

92.82 − 5e−0.08·0.6

5 + 100
≈ 0.1100.

We can thus extend the table of zero rates to

T − t r(t, T )

0.3 5%
0.6 8%
0.8 10%
1.6 11%

✷
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1.4.2 Yield and duration

Definition 3 The yield to maturity of a fixed coupon bond is the interest rate y that when

used to discount all coupons and the principal results in the market price. The yield thus

solves

pmarket(t) =
n
∑

i=1

cie
−y(Ti−t) +Ke−y(Tn−t).

Remark 2 The yield to maturity of a zero coupon bond is simply the zero rate. This
represents the bonds “internal rate of interest” and the above definition is an attempt to
extend the concept to fixed coupon bonds.

Example 5 The yield to maturity of the coupon bond considered in Example 4 solves

92.82 = 5e−y·0.6 + (5 + 100)e−y·1.6.

It should lie between 8% and 11% the zero rates for maturities 0.6 and 1.6, and it should be
closer to 11%, since most weight is given to the large final payment.

Trial and error gives
y ≈ 10.94%.

✷

To simplify notation include the principal K in the last coupon so cnewn = K+coldn and assume
that t = 0. Also let p = pfixed, then

p =
n
∑

i=1

cie
−y(Ti−t).

Definition 4 The duration D of a fixed coupon bond is defined as

D =

∑n
i=1 Ticie

−yTi

p
=

n
∑

i=1

Ti
cie

−yTi

p
.

The duration is thus a weighted average of the coupon dates of the bond where the weight
for a certain coupon date is the present value of the coupon payment divided by the value of
the bond (which is the present value of all the payments). Duration is a measure of how long,
on average, the holder of the bond has to wait before receiving cash payments or “mean time
to coupon payment”. Note that for a zero coupon bond with maturity T the duration is T .
Duration also acts as a measure of sensitivity of the bond price to changes in the yield.

Proposition 1 With notation as above we have

dp

dy
=

d

dy

{

n
∑

i=1

cie
−y(Ti−t)

}

= −Dp.

So duration is essentially for bonds (with respect to yield) what delta is for derivatives (with
respect to the underlying price). Approximately it holds that

∆p ≈ −Dp∆y

or
∆p

p
≈ −D∆y.

For concrete computations, see Example 6.5 in “Fundamentals of Futures and Options Mar-
kets”, or Example 4.5 in “Options, Futures, and Other Derivatives”.
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Remark 3 Note that the change in yield is supposed to be the same for all maturities. This
means that we are looking at what happens when there is a parallel shift in the yield curve
(zero curve).

Corresponding to gamma for derivatives there is convexity for bonds. It is defined as

C =
d2p

dy2
.

1.5 Forward rates

We have seen that the continuously compounded spot rate r(t, T ) solves

er(t,T )(T−t) =
1

p(t, T )
. (2)

This is because an investment of $1 at time t can create a risk less payoff of $1/p(t, T ) at
time T .
Now fix t < S < T ans suppose t is today and we want to offer an interest rate, determined
today, over the future interval [S, T ]. We will extend the argument that led to (2).

• At time t sell an S-bond. This will earn you p(t, S). Invest the money in T -bonds. This
will give you p(t, S)/p(t, T ) T -bonds. The net investment at time t is zero.

• At time S you will have to pay $1 to the owner of the S-bond.

• At time T you will receive $p(t, S)/p(t, T ) · 1.

Thus an investment of $1 at time S results in a payoff of p(t, S)/p(t, T ) at time T . We would
therefore offer the rate

ef(t;S,T )(T−S) =
p(t, S)

p(t, T )
. (3)

Definition 5 The continuously compounded forward rate for [S, T ] contracted at t is defined
as

f(t;S, T ) = −
ln p(t, T )− ln p(t, S)

T − S
(4)

Remark 4 Note that as S ↓ t the forward rate tends to the spot rate

lim
S↓t

f(t;S, T ) = r(t, T ).

There exists a term structure of forward rates as well; it is in two dimensions since for each
future time S there exists one forward rate for each T ≥ S. Formally we have that the term
structure of forward rates is given by {f(t;S, T ) : S ∈ [t,∞), T ∈ [S,∞)}.
If we use that p(t, T ) = e−r(t,T )(T−t) in (4) we get the following relationship between forward
rates and spot rates

r(t, T )(T − t) = r(t, S)(S − t) + f(t;S, T )(T − S).

The term structure of forward rates is therefore determined by the term structure of spot
rates. For a concrete example of computations using the relation, see Table 4.5 in Hull.
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