
1 Martingales

1.1 Basics

We begin directly with the definition of a martingale.

Definition 1 A sequence X = {Xn}
∞
n=1 of random variables is said to be a martingale with

respect to the filtration F = {Fn}n≥0 (or an F-martingale) if for all n ≥ 0

1. Xn ∈ Fn (i.e. X is adapted to F)

2. E[|Xn|] < ∞

3. E[Xn+1|Fn] = Xn

If we in 3 replace the equality with ≥ (≤) X is said to be a submartingale ( supermartingale).

Remark 1 As long as the sample space Ω is finite condition 2 is always fulfilled.

Example 1 Consider a sequence of tosses of a fair coin, and let

Un =

{

1 if the n:th toss is heads
−1 if the n:th toss is tails

You can think of Un as the earnings if you bet $1 on heads at coin toss number n. Now, let

Xn =
n∑

i=1

Ui, n ≥ 1

then Xn represents your total earnings after n games betting on heads. Let X0 = 0 and let
F0 = {∅,Ω} and Fn = σ(U1, . . . , Un), n ≥ 1.

Claim: Xn, n ≥ 0 is a martingale with respect to F = {Fn}n≥0.

Check:

1. X0 = 0 ∈ {∅,Ω} and Xn =
∑

n

i=1 Ui ∈ Fn = σ(U1, . . . , Un) since it is a sum of
U1, . . . , Un, which are measurable.

2. E[|Xn|] < ∞ (|Xn| ≤ n)

3. For the martingale property we have that

E[Xn+1|Fn] = E[Xn + Un+1|Fn] = E[Xn|Fn] + E[Un+1|Fn] =

= Xn + E[Un+1] = Xn + 0 = Xn.

where we have used the linearity of the conditional expectation to obtain the second
equality, and that Xn ∈ Fn, whereas Un+1 is independent of Fn to obtain the third.

Note that if the coin tossed is not fair so P (Un = 1) ≤ 1/2, then the above computations
above give

E[Xn+1|Fn] ≤ Xn,

i.e. Xn, n ≥ 0 is a supermartingale. In this case Xn corresponds to betting on an unfavorable
game, so there is nothing “super” about a supermartingale. ✷
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Lemma 1 If Xn, n ≥ 0 is a martingale with respect to F then

E[Xn|Fm] = Xm for n > m. (1)

Proof: Suppose n = m+ k, k ≥ 2 (k = 1 is the martingale property). Then

E[Xm+k|Fm] = E[E[Xm+k|Fm+k−1]Fm] = E[Xm+k−1|Fm]

where we have used iterated expectations to obtain the first equality and property 3 of Defi-
nition 1. Now iterate the procedure and the result will follow. ✷

Remark 2 We could use (1) as the definition, but since it is more difficult to check than
property 3 of Definition 1 we will not.

Lemma 2 Property 3 of Definition 1 is satisfied if and only if

E[∆Xn|Fn−1] = 0 for all n ≥ 1.

where ∆Xn = Xn −Xn−1.

Proof: Writing things out we get

E[∆Xn|Fn−1] = E[Xn −Xn−1|Fn−1].

Now, using that the conditional expectation is linear, and that Xn−1 ∈ Fn−1, we obtain

E[∆Xn|Fn−1] = E[Xn|Fn−1]−Xn−1 = 0.

The equivalence of the two properties should now be obvious. ✷

1.2 Martingale transforms

The goal of this section is to show that a discrete time stochastic integral preserves the
martingale property. We start by looking at an example. The point of the example is to show
that there is no system for beating a fair game (represented by a martingale).

Example 2 Let Xn, n ≥ 0, be the martingale defined in Example 1. Recall that Xn was
the amount of money you would have won betting $1 each time on a fair game.

Now let H be a predictable process, i.e.

Hn ∈ Fn−1.

H will represent our gambling strategy and thus for the n:th bet we may look at the outcomes
at times 1, . . . , n− 1, but not at time n, hence we require Hn to be predictable. Specifically,
Hn should be the amount in $ you bet at time n on heads.

Our winnings at time n can be expressed using a stochastic integral

(H ·X)n =
n∑

m=1

Hm (Xm −Xm−1)
︸ ︷︷ ︸

=Um

with the convention
(H ·X)0 = 0.

✷

2



Proposition 1 Let Xn, n ≥ 0 be a martingale, and Hn, n ≥ 1 a predictable process such
that |Hn| ≤ M , n ≥ 1. Then (H ·X)n, n ≥ 0 is a martingale.

Proof: We need to check the conditions in Definition 1. We have the following.

1. (H ·X)n =
∑

n

m=1 Hm(Xm −Xm−1) ∈ Fn, since it is a sum of products of measurable
functions. Obviously (H ·X)0 = 0 ∈ F0.

2.

E[|(H ·X)n|] ≤ E

[
n∑

m=1

|Hm||(Xm −Xm−1)|

]

=
n∑

m=1

E[|Hm||(Xm −Xm−1)|] ≤

≤
n∑

m=1

ME[|Xm|+ |Xm−1|] < ∞,

since X is a martingale.

3. We will check that E[∆(H ·X)n|Fn−1] = 0.

E[∆(H ·X)n|Fn−1] = E[(H ·X)n − (H ·X)n−1|Fn−1]

= E[Hn(Xn −Xn−1)|Fn−1]

= E[Hn∆Xn|Fn−1]

= HnE[∆Xn|Fn−1] = 0.

Here we have used that Hn ∈ Fn−1, since it is predictable, to obtain the second to last
equality, and that Xn, n ≥ 0 is a martingale to get the last equality.

✷

Example 3 Going back to Example 2, in what way can we use Proposition 1 to deduce that
you can not make money off a fair game? Proposition 1 tells us that (H · X)n, n ≥ 0 is a
martingale which means that

E[(H ·X)n] = E[(H ·X)0] = 0.

In words this says that our expected winnings at any time n are 0! ✷

Remark 3 The condition |Hn| ≤ M , n ≥ 1 is important, because otherwise the following
strategy provides a “sure thing” when P (Ui = 1) > 0:

H1 = 1, and Hn =

{

2Hn−1 if Un−1 = −1,
1 if Un−1 = 1,

which means that you should double every time you loose. If you loose k times and then win,
your winnings will be

−1− 2− . . . − 2k−1 + 2k = 1.

Here obviously Hn is not bounded, and the mean loss just before the first head is

1

2
· 0 +

1

2

n−1∑

k=0

1

2n
(1 + 2 + . . .+ 2n−1) = ∞.

It would therefore be more accurate to say that there is no system for beating a fair game
with limited resources.
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