
1 The Black-Scholes model: extensions and hedging

1.1 Dividends

Since we are now in a continuous time framework the dividend paid out at time t (or t−) is
given by dDt = Dt −Dt−, where as before D denotes the cumulative dividend process of the
risky asset.

1.1.1 Known dollar dividend

This means that for certain points in time between now, time t, and the option maturity,
at time T , we have dividend payments of known dollar size. Let the dividend times be ti,
i = 1, . . . , n, such that t < t1 < . . . < tn < T and the dividend payments be given by

dDti = di.

Since the Black-Scholes model implies a lognormal distribution of the stock price, the stock
price is guaranteed to always be positive, but we can not guarantee it to be greater
than any ǫ > 0. This means that the Black-Scholes model is not consistent with the type of
dividend payments that has just been described.
As for the binomial model we will make an engineering fix and decompose the stock price into
a risky part S∗ and a risk less part which is the present value of future dividends PV (div)

St = S∗
t + PV (div) = S∗

t +
n∑

i=1

e−r(ti−t)di.

What determines the (European) option price is S∗
t , so the price of an option, on a stock

which pays dividends of known dollar size, can be computed using the Black-Scholes formula
with today’s stock price St, replaced with

S∗
t = St − PV (div) = St −

n∑

i=1

e−r(ti−t)di

(recall that the holder of the option will not receive any dividend payments). See Example 13.6
in “Fundamentals of Futures and Options Markets”, or Example 14.9 in “Options, Futures,
and Other Derivatives” for a concrete example of the calculations.

1.1.2 Known dividend yield paid discretely

This means that for certain points in time between now, time t, and the option maturity, at
time T , we have dividend payments which are a given fraction of the stock price at that time.
Let the dividend times be ti, i = 1, . . . , n, such that t < t1 < . . . < tn < T and the dividend
payments be given by

dDti = δiSti−.

Note that these dividend payments can always be guaranteed, if the stock price is almost
zero the dividend will be very small, that is all!
It can be shown that the price of an option, on a stock which gives a dividend yield paid
discretely, can be computed using the Black-Scholes formula with today’s stock price St,
replaced with

Sy
t =

n∏

i=1

(1− δi)St.

Normally one would have δi = δ, i = 1, 2, . . . , n.
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1.1.3 Continuous dividend yield

This means that a constant fraction of the stock price is distributed as dividends continuously,
i.e.

dDt = δStdt.

Now recall that under the martingale measure Q all price processes or in the case with
dividends present, gain processes have to have the same local mean rate of return as the
risk-less asset, that is r. Let us use this to determine the dynamics of S under Q, when
dDt = δStdt. We have that Gt = St +Dt, which means that

dGt = dSt + dDt = αStdt+ σStdŴt + δStdt

= (α+ δ)Stdt+ σStdŴt.

In order to have a local mean rate of return equal to r we have to set α = r − δ, thus the Q
dynamics of a stock paying a continuous dividend yield have to be

dSt = (r − δ)Stdt+ σStdŴt.

This means that

S(t) = s0 exp

{(
r − δ − 1

2
σ2

)
t+ σŴt

}

= s0e
−δt exp

{(
r − 1

2
σ2

)
t+ σŴt

}

This means that the price of an option on a stock which pays a continuous dividend yield
can be computed using the Black-Scholes formula with today’s stock price St, replaced with

Scy
t = e−δ(T−t)St.

Remark 1 Assets that are usually considered to pay a continuous dividend yield are stock
indices. It also turns out that exchange rates can be seen as assets paying a continuous
dividend yield equal to rf , where rf is the foreign risk-free interest rate.

Adjusting the binomial tree to price options on stocks paying continuous dividend
yield The expectation of S under Q when S pays a continuous dividend yield is

EQ[St] = s0e
(r−δ)t

To see this use that St/s0 is lognormal with expectation (r − σ2/2)t and variance σ2t. This
means that over a time step ∆t in the binomial model the expected change in the asset price
is

EQ [S∆t] = s0e
(r−δ)∆t.

In the binomial model this is given by

EQ [s0Z] .

Thus the equation for q in this situation is

s0e
(r−δ)∆t = q · s0u+ (1− q) · s0d.

or
e(r−δ)∆t = q · u+ (1− q) · d.
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Remark 2 The corresponding equation for non-dividend paying stocks, or stocks paying
discrete dividends can be written

er∆t = q · u+ (1− q) · d.

For a concrete example of the calculations see Example 12.1 in “Fundamentals of Futures
and Options Markets”, or Figure 12.11 in “Options, Futures, and Other Derivatives”.

Forward price of asset which provides a known yield We can now compute the
forward price of X = ST , when S pays a known dividend yield δ. From Proposition 1 of
lecture 7 we know that

f(t;T,X) =
Πt[X]

p(t, T )
=

BtE
Q[ST /BT |Ft]

p(t, T )
.

Using that Bt = ert (which means that p(t, T ) = e−r(T−t)) we obtain that

f(t;T,X) = EQ[ST |Ft] = e(r−δ)(T−t)St.

1.2 Futures options and the Black -76 formula

Suppose that we want to compute the price of a European call option with maturity T and
strike price K written on a futures contract. The futures contract in turn is written on the
underlying stock S and has delivery date T1 such that T < T1. The holder of such an option
will at time T receive a long position in the futures contract and the amount

X = max{F (T ;T1)−K, 0}.

Since the spot price of a futures contract is always zero we can forget about the long position
in the futures contract, and concentrate on the T -claim X when pricing the option.
If we consider the standard Black-Scholes model we have that

F (t;T ) = EQ[ST |Ft] = BTE
Q

[
ST

BT

∣∣∣∣Ft

]
= er(T−t)St.

and therefore

X = max{er(T1−T )ST −K, 0} = er(T1−T )max{ST − e−r(T1−T )K, 0}.

The option on the futures contract can thus be seen as er(T1−T ) options on S with strike price
e−r(T1−T )K (and expiry date T ). The Black-Scholes formula then yields

cfut = er(T1−T )
{
sN [d1(t, s)]− e−r(T−t)e−r(T1−T )KN [d2]

}

or if we use that s = e−r(T1−t)F (t;T1) we obtain:

Proposition 1 (Black’s formula) The price, at t, of a European call option with strike
price K and expiry date T on a futures contract (on the underlying asset S) with delivery
date T1 is given by

cfut = e−r(T−t) (F (t;T1)N [d1]−KN [d2]) , (1)
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where 



d1 = 1
σ
√
T−t

{
ln

(
F
K

)
+ 1

2σ
2(T − t)

}
,

d2 = d1 − σ
√
T − t.

and N denotes the cumulative distribution function of the standard normal distribution, whe-
reas F = F (t;T1).

For a concrete example of calculations using this formula, see Example 16.4 in “Fundamen-
tals of Futures and Options Markets”, or Example 17.6 in “Options, Futures, and Other
Derivatives”.

Remark 3 For the formula (1) to hold it is not really required that the spot price process
S has the lognormal property, but rather that the futures price process does. This is useful
when the underlying asset S is a commodity which is not ideally traded, e.g. electricity.

1.2.1 Using Black’s model instead of Black-Scholes-Merton

Suppose that we want to price a European call option on the spot price S of an asset. If the
asset is a consumption asset the Black-Scholes framework is in many cases not applicable
(the underlying is not ideally traded and there may be other benefits than monetary that
come from holding the asset). In this situation you can sometimes use the Black -76 formula
although you are not trying to price a futures option. This is because at the delivery time T
we have that the futures price satisfies

F (T ;T, ST ) = ST .

The payoff from a call option with maturity T and strike K on an underlying futures contract
written on S with delivery time T1 ≥ T is

Xfuture = max{F (T ;T1, ST1
)−K, 0}.

If the maturity of the option coincides with the delivery date, i.e. T = T1, then

Xfuture = max{F (T ;T, ST )−K, 0} = max{ST −K, 0} = Xspot

where Xspot is the payoff from a call option written on the spot price S. What is needed
is therefore a futures contract written on the spot price with the same delivery date as the
option has expiry date (both written on the same spot price of course).

Remark 4 Note that also the forward price f satisfies

f(T ;T, ST ) = ST .

If interest rates are assumed to be deterministic, also forward prices are Q-martingales and
can be used in the Black -76 formula.

For some assets using futures prices rather than spot prices is a necessity, but it can save some
work even for assets that can be handled within the Black-Scholes framework. For instance
to price a European call option on an asset providing a continuous dividend yield of δ one
should use the Black-Scholes formula with Scy

0 = S0e
−δT and will obtain

c0 = S0e
−δTN [d1]−Ke−rTN [d2]
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where 



d1 = 1
σ
√
T

{
ln

(
S0

K

)
+

(
r − δ + σ2/2

)
T
}
,

d2 = d1 − σ
√
T .

The forward price of such an asset is given by

f(0;T, ST ) = e(r−δ)TS0.

If we insert S0 = e−(r−δ)T f0 into the above formula we obtain

c0 = e−rT (f0N [d1]−KN [d2]) .

where 



d1 = 1
σ
√
T

{
ln

(
f0
K

)
+ 1

2σ
2T

}
,

d2 = d1 − σ
√
T .

which is the Black -76 formula. We see that with this formula there is no need to estimate δ!
In general using the Black -76 formula makes it unnecessary to estimate dividends, storage
costs, and yield for the underlying asset.

1.2.2 Using a binomial tree for options on futures contracts

Recall that the futures price process is a martingale under Q (see Proposition 3 of lecture 7).
This means that when we build the tree we should make sure that

f = EQ[Ft+1|Ft = f ]

or, more explicitly
f = q · fu+ (1− q) · fd.

For a concrete example of the computations, see Example 12.3 in “Fundamentals of Futures
and Options Markets” and Figure 12.13 in “Options, Futures and Other Derivatives”.

1.3 Hedging and the Greeks

You may have heard that options are risky, well are they? Let us consider a European call
option on an underlying stock.

Example 1 Let us consider an extreme example. Consider a European call option on an
underlying stock. Say that today’s stock price is $100. Assume that the call option has a
strike price of K which is $99 and that and should be exercised tomorrow. This means that
the option price today is roughly $1.

Assume now that the stock price goes down $1 until tomorrow. The option then becomes
worthless, i.e. the option price goes down $1.

This means that a drop of 1% in the stock price results in a drop of almost 100% in the
option price! In this sense option are risky. ✷

Let us look at another example.
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Example 2 Assume that we have sold a European call option on 100 000 ABC stocks for
$2 million.

Suppose that we have the following data for the market

S = 365, K = 370, σ = 0.2, r = 7%, T − t = 1/4.

Then the option price is given by

c(t, S) = 100 000×

×{SN [d1(t, S)] −Ke−r(T−t)N [d2(t, S)]}

= 100 000× 15.264

We thus seem to have made a profit of

2 000 000 − 1 526 400 = 473 600 dollars,

but . . . we are exposed to financial risk!

To deal with the financial risk we can have a number of strategies.

The first of which is called taking a naked position, i.e. do nothing! There are then different
scenarios at time t = T

•If ST < 370 the option will not be exercised.

Our net earnings: $2 000 000.

•If ST > 370 the option will be exercised.

We will have to buy 100 000 stocks at the price ST and sell them at the price $370

Our net earnings are then: $2 000 000− 100 000× (ST − 370)

–If ST=385: $500 000

–If ST=395: $−500 000

The second strategy is called taking a covered position. This means that we buy 100000 stocks
today. Again there are different scenarios at time t = T .

•If ST < 370 the option will not be exercised.

Our net earnings: $2 000 000 + 100 000 × (ST − 365).

–If ST=360: $1 500 000

–If ST=340: $−500 000

•If ST > 370 the option will be exercised.

Our net earnings: $2 000 000 + 100 000 × (370 − 365) = $2 500 000.

To sum up: If we take a naked position it will always result in a profit if ST < K, but can
result in a loss if ST > K. If we take a covered position it will always result in a profit if
ST > K, but can result in a loss if ST < K. Thus neither strategy gives complete protection
against financial risk, which is of course also hoping for a bit too much. ✷

The purpose of hedging is to limit or at least to lower the financial risk. Depending on your
attitude to risk and the information available to you, you can choose to set up
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• a perfect hedge

• a delta hedge

• a gamma hedge or

• use some other strategy . . .

Fix a T -claim X.

Definition 1 A self-financing portfolio h is a perfect hedge against X if

V S
T (h) = X with probability 1 under P.

If you set up a perfect hedge you know exactly how much money you will make. The problem
with setting up a perfect hedge is that in a continuous time framework the replicating portfolio
requires rebalancing in continuous time, which leads to high transactions costs! So what can
we do instead?

1.3.1 The Greeks

Let P (t, s) denote the pricing function of a portfolio based on one underlying asset with price
process St.

Definition 2 The Greeks are defined in the following way:

∆ =
∂P

∂s

Γ =
∂2P

∂s2

θ =
∂P

∂t

ρ =
∂P

∂r

V =
∂P

∂σ

The letter V is not really a Greek letter at all, but it is called “vega”. The “Greeks” are sensi-
tivity measures. ∆ and Γ reflect the portfolio’s sensitivity to small changes in the price of the
underlying (financial risk), whereas ρ and V reflect the portfolio’s sensitivity to misspecifica-
tions of the model (recall that r and σ should be constant in the Black-Scholes framework)!

1.3.2 Delta hedging

The goal of delta hedging is to make the portfolio insensitive to small changes in the price of
the underlying.

Definition 3 A portfolio with ∆ = 0 is said to be delta neutral.

The idea now is to add a derivative to the original portfolio. Since the price of the derivative is
perfectly correlated with the price of the underlying it should be possible to choose portfolio
weights so as to make the modified portfolio delta neutral.

Definition 4 A position in the derivative is a delta hedge for the portfolio if the modified
portfolio (original portfolio + derivative) is delta neutral.
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We will use the following notation:

P (t, s) the pricing function of the original portfolio

F (t, s) the pricing function of the derivative

y the number of derivatives to add to the portfolio.

The value process V (t, s) of the modified portfolio is

V (t, s) = P (t, s) + y · F (t, s).

The modified portfolio is delta neutral if

∂V

∂s
= 0

i.e.
∂P

∂s
+ y

∂F

∂s
= 0.

We can now solve for y! The solution is

y = −∆P

∆F

Example 3 Suppose that we have sold a derivative with price function G(t, s) and that we
wish to hedge it using the underlying itself. Then we have that

P (t, s) = −G(t, s)

and that
F (t, s) = s.

For y we obtain
y = ∆G.

The delta of the derivative gives us the number of underlying assets we have to buy to hedge
the derivative! ✷

There is a problem with the delta hedging strategy: the portfolio has to be rebalanced when
the price of the underlying changes, because as the price changes ∆ will change. One can
actually show the following.

Proposition 2 For a continuously rebalanced delta hedge in the underlying, the value of the
underlying and of the risk-less asset (used to keep things self-financing) will replicate the
derivative.

This means that the continuously rebalanced delta hedge described above is a perfect hedge!

Proposition 3 In the Black-Scholes framework the delta of a European call option written
on a non-dividend paying stock is

∆c = N(d1),

where N denotes the cumulative distribution function of the standard normal distribution,
and d1 is given by

d1(t, s) =
1

σ
√
T − t

{
ln

(
s

K

)
+

(
r +

1

2
σ2

)
(T − t)

}
.

Proof: Just take derivatives! Note that it is not quite as easy as it seems, since d1 and d2 in
Proposition 2 in lecture 8 also depend on s. ✷
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Estimating Delta using a binomial tree To compute ∆ in a binomial model recall that

∆ =
∂P

∂s
.

where P denotes the price of the original portfolio and for the binomial model we will think
of this as consisting of a single derivative. This means that

∆ ≈ ∆P

∆s
.

Now consider the following one step situation in a binomial tree.

s

u

d

su

sd

Φ( )u

Φ(d)

Here φ(u) is the price of the derivative if the stock price goes up, and φ(d) is the price of the
derivative if the stock price goes down. We then have that

∆ =
∆P

∆s
=

φ(u)− φ(d)

su− sd
=

1

s

φ(u)− φ(d)

u− d
.

For concrete computations, see Section 12.6 in “Fundamentals of Futures and Options Mar-
kets”, or “Options, Futures, and Other Derivatives”.

Remark 5 The letter y in the computations above was chosen for mnemonic reasons. Recall
that in the replicating portfolio we used x for the amount of SEK in the bank account and
y for the number of assets in the replicating portfolio. If you compare the expression for y in
the replicating portfolio given in the proof of Proposition 2 in lecture 1, and the expression
for ∆ found above you will see that they are exactly the same!

1.3.3 Gamma hedging

A delta hedge is rebalanced because S and with that also ∆ is changed. Γ is a measure of
how sensitive ∆ is to changes in S

Γ =
∂2P

∂s2
=

∂∆

∂s
.

The goal now is to make the portfolio both delta and gamma neutral. The idea is to add two
derivatives to the portfolio to be able to achieve this.
We will use the following notation:

P (t, s) pricing function of the portfolio

F (t, s) pricing function of derivative 1

G(t, s) pricing function of derivative 2

yF the number of derivatives of type 1 to add to the portfolio
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yG the number of derivatives of type 2 to add to the portfolio

The value process V (t, s) of the modified portfolio is

V (t, s) = P (t, s) + yF · F (t, s) + yG ·G(t, s).

We want the following to hold

∂V

∂s
= 0 and

∂2V

∂s2
= 0.

This yields the following system of equations





∆P + yF∆F + yG∆G = 0,

ΓP + yFΓF + yGΓG = 0.

Solve for yF and yG!
Note that for the underlying itself we have

∆S = 1 and ΓS = 0

If you choose G(t, s) = s you will get a triangular system which is easy to solve





yF = −ΓP

ΓF

,

yS =
∆FΓP

ΓF
−∆P .
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