
Exam in SF2701 Financial Mathematics.
Wednesday August 15 2018 08.00-13.00.

Answers and brief solutions.

1. (a) i. The arbitrage bounds for the interest rate r are

0.5 ≤ er ≤ 1.5.

or if you use a simple rate

0.5 ≤ (1 + rs) ≤ 1.5.

ii. Both the price of stock and the price of the option have to satisfy the risk-
neutral valuation principle. This gives us the following set of equations







100 = e−r[q · 150 + (1− q) · 50],

22 = e−r[q · 42 + (1− q) · 0].

Solving these equations we find that r=4.8790% (and q=0.55), or rs=5%
if quoted as a simple rate.

(b) i. The payoff from the stock and the call option looks as follows
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Since the stock has been bought and the call has been sold to create the
covered call, the payoff from the covered call is given by:

1
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In the figures above K = 100 has been used, but hopefully it should be
clear what the payoff looks like for a general K.

ii. The portfolio is worth

100 − 2 = 98

to begin with, and at maturity it is worth

100 − 0 = 100.

It has therefore increased $2 in value although the stock price has not
moved.

2. (a) We have that

T = 6/12 = 1/2
∆t = T/2 = 1/4

u = eσ
√
∆t ≈ 1.0942

d = e−σ
√
∆t ≈ 0.9139

and the tree for the futures price is therefore

59.8609
54.7087

50.0000 50.0000
45.6966

41.7635

Now the option price tree can be computed using

q =
1− d

u− d
≈ 0.4775,

and the discount factor
1

er∆t
≈

1

1.0126
and the result is

0.0000
1.0320

3.7392 2.0000
6.3034

10.2365
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In each node the value is obtained as

max{52 − Ft,
1

1.0126
(q · P u + (1− q) · P d)}

where Ft is the current futures price, and P u and P d is the price of the option if
the futures price goes up and down, respectively. Early exercise will be optimal
in the node with option price 6.3034. The price of the option is thus 3.7392.

(b) If we denote the option price by Π we have that

∆ =
∂Π

∂f
≈

∆Π

∆f
.

This gives us

∆ =
1.0320 − 6.3034

54.7087 − 45.6966
≈ −0.5849.

3. (a) i. We have that the futures price (which is equal to the forward price, since
interest rates are deterministic) is given by

F (0, T ) =
Π0(ST )

p(0, T )
= erTEQ

[

ST

BT

]

.

This futures price will make the initial value of the futures contract zero.
To compute the expectation note that we have the formula

S0 = EQ





ST

BT
+

∑

ti≤T

∆Dti

Bti





so

S0 = EQ

[

S9/12

B9/12
+

∆D6/12

B6/12

]

. (1)

If we use that ∆D6/12 = 3 we obtain

S0 = EQ

[

S9/12

B9/12

]

+
3

B6/12−
= EQ

[

S9/12

B9/12

]

+ e−0.05∗0.53

or

EQ

[

S9/12

B9/12

]

= S0 − e−0.05∗0.53

The futures price is therefore

F (0, 0.75) = e0.05·0.75(100 − e−0.05∗0.53) ≈ 100.7835.

ii. Use the Black -76 formula (which can be obtained from Black-Scholes for-
mula using s = e−r(T−t)Ft) with parameters

F0 = 100.7835, K = 105, σ = 0.20, r = 0.05, T = 0.25.

The price of the call option on the futures price is therefore

cfut(0) = 2.3054.

The put-call parity for futures options reads

pfut(0) = e−rTK − e−rTF0 + cfut(0).

This can be obtained from the standard Black-Scholes put-call parity by
substituting s = e−rTF0 everywhere. Using put-call parity we obtain

pfut(0) = 6.4695.
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(b) If we denote the price of a derivative written on the underlying stock by Π we
have by definition that

∆ =
∂Π

∂s
.

If we denote by C(t, St) the price at time t of a European call option with strike
price K and expiry date T written on the stock with price St at time t, and
by P (t, St) the price at time t of a European put option with the same strike
price and expiry date as the call, and also having the stock as underlying, then
according to put-call parity we have

P (t, St) = Ke−r(T−t) + C(t, St)− St

The price the synthetic long stock is therefore

Π = C(t, St)− P (t, St) = St −Ke−r(T−t)

In the case of the synthetic long stock we therefore get

∆ =
∂Π

∂s
=

∂s−Ke−r(T−t)

∂s
= 1.

4. (a) i. Zero coupon bond prices satisfy

pK(0, Ti) = e−r(0,Ti)TiK.

Here we have T1 = 0.5, K = 100, and r(0, 0.5) = 2.0% and this yields the
bond price

p100(0, 0.5) = e−0.02·0.5100 = 99.0050.

ii. Fixed coupon bond prices are computed as

pfixed(t) =
n
∑

i=1

cip(t, Ti) +Kp(t, Tn),

where p(t, T ) = p1(t, T ). For the two year coupon bond the coupon is
c2 = 0.04 · 0.5 · 100 = 2 and the formula reads

p2fixed(0) = 2p(0, 0.5) + 2p(0, 1) + 2p(0, 1.5) + (2 + 100)p(0, 2).

Using that p(0, Ti) = e−r(0,Ti)Ti this results in the coupon bond price

p2fixed(0) = 2e−r(0,0.5)0.5 + 2e−r(0,1)1 + 2e−r(0,1.5)1.5 + (2 + 100)e−r(0,2)2 = 99.0494.

iii. For the three year coupon bond the coupon is c3 = 0.03 · 1 · 100 = 3 and
the formula reads

p3fixed(0) = 3p(0, 1) + 3p(0, 2) + (3 + 100)p(0, 3).

Again using that p(0, Ti) = e−r(0,Ti)Ti this results in the coupon bond price

p3fixed(0) = 3e−r(0,1)1 + 3e−r(0,2)2 + (3 + 100)e−r(0,3)3 = 99.8026.

(b) The swap rate is set so as to make the value of the fixed and the floating leg
equal, i.e.

cp(0, 1) + cp(0, 2) + (c+K)p(0, 3) = K.

Using that c = Rs · 1 ·K, we obtain

Rs =
1− p(0.3)

p(0, 1) + p(0, 2) + p(0, 3)
=

1− 0.9139

0.9753 + 0.9139 + 0.9139
≈ 0.0307

The swap rate is thus Rs = 3.07%.
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(c) Notice that the spread (the difference between the rate offered to Company B
and the rate offered to Company A) in the US is 3.5-2.0 = 1.5%, whereas the
spread in Great Britain is only 2.0-1.3 = 0.7%. The difference in spreads means
that there is money to be made, ideally 1.5-0.7 = 0.8%. If the bank should get
0.2% this leaves 0.6% to the companies, and to be equally attractive to both
the rates should be 0.3% lower for both companies. One way to set up the swap
is the following:

USD 2.0%
✛

Comp
A

USD 2.0%
✛

✲

GBP 1.0%

Bank

USD 3.2%
✛

✲

GBP 2.0%

Comp
B

✲

GBP 2.0%

This swap has the effect of transforming the USD interest rate of 2% per annum
to a GBP interest rate of 1.0% per annum for Company A. So Company A is
0.3% per annum better than it would be if the swap had not been set up. From
Company B’s point of view the swap transforms the GBP interest rate of 2%
per annum to a USD interest rate of 3.2% and ends up 0.3% per annum better
than if the swap had not been set up. The bank makes a gain of 1.2% on its
cash flows in USD, and a 1.0% loss on its cash flows in GBP. The net gain,
ignoring exchange risk, is 0.2%. Thus the net gain to all parties is 0.3+0.3+0.2
= 0.8% as expected.

5. (a) The payoff X of the chooser option at time T0 equals

X = max {C(T0, ST0
,K, T, r, σ), P (T0 , ST0

,K, T, r, σ)} ,

where C(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of
a European call option with exercise price K and expiry date T , when the
current price of the underlying is s, the interest rate is r, and the volatility of
the underlying is σ. The notation P (t, s,K, T, r, σ) is used for the price of the
corresponding put option.

Using put-call-parity, P (t, s,K, T, r, σ) = Ke−r(T−t)+C(t, s,K, T, r, σ)−s, this
payoff can be written as

X = max
{

C(T0, ST0
,K, T, r, σ),Ke−r(T−T0) + C(T0, ST0

,K, T, r, σ) − ST0

}

= C(T0, ST0
,K, T, r, σ) + max

{

0,Ke−r(T−T0) − ST0

}

.

The price of the chooser option is therefore given by

Π(t;X) = e−r(T0−t)EQ
[

C(T0, ST0
,K, T, r, σ) + max{0,Ke−r(T−T0) − ST0

}
∣

∣

∣Ft

]

= e−r(T0−t)EQ [C(T0, ST0
,K, T, r, σ)|Ft ]

+ e−r(T0−t)EQ
[

max
{

0,Ke−r(T−T0) − ST0

}∣

∣

∣Ft

]

.

Now, using that all price processes normalized by the risk free asset B are Q-
martingales we find that e−r(T0−t)E[C(T0, ST0

,K, T, r, σ)|Ft ] = C(t, St,K, T, r, σ).
The second term in the price is easily identified as the price at time t of a put
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option, with exercise date T0, and exercise price Ke−r(T−T0). The price of the
chooser option is thus given by

Π(t;X) = C(t, St,K, T, r, σ) + P (t, St,Ke−r(T−T0), T0, r, σ).

Both prices in the above formula can be explicitly computed using Black-Scholes
formula, and put-call-parity.

(b) The price today (t = 0) of the T -claim X

X = φ(ST ) =

[

ln

(

ST

S0

)]2

is given by

Π0 = e−rTEQ

[

[

ln

(

ST

S0

)]2
]

.

Since ST = S0e
Z where Z ∈ N

(

(r − σ2/2)T, σ2T
)

this can be written as

Πt = e−rTEQ
[

Z2
]

.

This in turn can be computed as

Πt = e−rT
(

V (Z) + {E[Z]}2
)

= e−rT
(

σ2T + (r − σ2/2)2T 2
)

.


