
SF2930 Regression Analysis

Alexandre Chotard

Tree-based regression and classi�cation

20 February 2017

1 / 30

Idag

Overview

Regression trees

Pruning

Bagging, random forests

2 / 30

Today

Overview

Regression trees

Pruning

Bagging, random forests

3 / 30

Setup

I Let Y be a real-valued random variable. Given x ∈ X ⊂ Rd ,

we want to predict the value of Y .

I To understand how di�erent values of x in�uence Y , we have

N ∈ N∗ examples (x i , yi)i∈[1..N].

I The variable Y can have discrete or continuous values,

corresponding respectively to classi�cation and regression

problems.

I We consider here binary decision trees. A decision tree
partitions X into simple regions (Rj)j∈[1..J]. For

x = (x1, . . . , xd) ∈ Rd and j such that x ∈ Rj , the value
predicted by the tree is

I the most represented class y among {xi ∈ Rj} in classi�cation
problems,

I the average of {yi |x i ∈ Rj , i ∈ [1..N]} in regression problems.

4 / 30

Setup
I Each node n of the tree is associated to a subset Rn of X,

which is further split into two regions through a test
comparing x i for some i ∈ [1..d] with a value c ∈ R. Then for
l and r left and right children of n,

I Rl := {x ∈ Rn|x i < c}
I Rr := {x ∈ Rn|x i ≥ c}

304 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

Figur: A regression tree for predicting the log salary (in 1, 000$) of a
baseball player, based on the number of years played and the number of
hits made in the previous year. 5 / 30

8.1 The Basics of Decision Trees 305

Years

H
its

1

117.5

238

1 4.5 24

R1

R3

R2

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.
In keeping with the tree analogy, the regions R1, R2, and R3 are known

as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision
terminal
node

leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal

internal node
nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches.

branch
We might interpret the regression tree displayed in Figure 8.1 as follows:

Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who

Figur: The three-region partition provided by the regression tree in the
previous �gure.

6 / 30

Example: spam classi�cation

9.2 Tree-Based Methods 315

600/1536

280/1177

180/1065

 80/861

 80/652

 77/423

 20/238

 19/236 1/2

 57/185

 48/113

 37/101 1/12

 9/72

 3/229

 0/209

100/204

 36/123

 16/94

 14/89 3/5

 9/29

 16/81

 9/112

 6/109 0/3

 48/359

 26/337

 19/110

 18/109 0/1

 7/227

 0/22

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

ch$<0.0555

remove<0.06

ch!<0.191

george<0.005

hp<0.03

CAPMAX<10.5

receive<0.125 edu<0.045

our<1.2

CAPAVE<2.7505

free<0.065

business<0.145

george<0.15

hp<0.405

CAPAVE<2.907

1999<0.58

ch$>0.0555

remove>0.06

ch!>0.191

george>0.005

hp>0.03

CAPMAX>10.5

receive>0.125 edu>0.045

our>1.2

CAPAVE>2.7505

free>0.065

business>0.145

george>0.15

hp>0.405

CAPAVE>2.907

1999>0.58

FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.

Figur: Tree for spam classi�cation. Split variables are shown in blue.
CAPMAX and CAPAVE = maximal and average length of the longest
uninterrupted sequences of capital letters, respectively.

7 / 30

Questions

I How do we construct such trees?

I How large should a tree be?

I What are the pros and cons of tree-based methods?

8 / 30

Today

Overview

Regression trees

Pruning

Bagging, random forests

9 / 30

Regression trees vs. linear regression

I We generally want to approximate a relation Y = f (x) + ε.

I Linear regression involves linear functions

f (x) = β0 +

p∑

j=1

βjx j .

I We will instead consider

f (x) =
J∑

j=1

mj1Rj
(x),

for a partition {Rj}j∈[1..J] of X.

10 / 30

Building a regression tree: cost function

I We will construct the tree by minimizing

RSS(m1, . . . ,mJ ,R1, . . . ,RJ) =
N∑

i=1

(yi − f (x i))2

=
J∑

j=1

∑

i :x i∈Rj

(yi − f (x i))2 =
J∑

j=1

∑

i :x i∈Rj

(yi −mj)
2.

I For each j , the mj minimizing the sum of squares∑
i :x i∈Rj

(yi −mj)
2 is always

mj = ȳRj
= average over all yi such that x i ∈ Rj .

I To �nd the minimizing Rj is however computationally

infeasible in general.

11 / 30

Building a regression tree: top-down minimization

I Thus, in order to �nd regions {Rj}Jj=1
minimizing

J∑

j=1

∑

i :x i∈Rj

(yi − ȳRj
)2

︸ ︷︷ ︸
QRj

we proceed with a top-down, greedy approach.

I In the �rst step, when splitting X into

R1(k , s) = {x ∈ X : xk < s} and R2(k , s) = {x ∈ X : xk ≥ s},

we minimize

QR1(k,s) + QR2(k,s)

w.r.t. k and s.

12 / 30

Building a regression tree: top-down minimization (cont.)

I For a given k , the optimal s is quite easily found by scanning

though the data.

I Repeating for all k ∈ [1..d] yields an optimal pair (k , s).

I Having found the best split, we partition the data into the two

resulting regions and repeat the splitting process on each of

these. And so forth.

I We stop growing the tree when some stopping criterion is

reached, e.g., when no region contains more than �ve training

data.

13 / 30

Bias versus variance

I The tree size is a tuning parameter governing the model's

complexity.

I A too large tree leads to over�tting (high variance on test

sets), while a too small tree leads to high bias.

I The optimal tree size should be determined adaptively from

the data.

I One possibility is to split a node only if the split implies an

RSS reduction exceeding a certain threshold; this is however

treacherous in top-down minimization, as an apparently

meaningless split may imply a good split later on.

14 / 30

Today

Overview

Regression trees

Pruning

Bagging, random forests

15 / 30

Cost complexity pruning

I Grow a large tree T0 while storing the di�erent QRj
associated

with each split.

I We de�ne a subtree T ⊆ T0 obtained by pruning T0 in a

bottom-up fashion.

I Let |T | denote the number of leaves Rm(T) in T .

I De�ne, for some α ≥ 0, the cost function

Cα(T) =

|T |∑

m=1

QRm(T) + α|T |,

where the QRm(T) are available from the �rst step.

I The idea is to �nd a subtree Tα minimizing Cα(T).

16 / 30

Cost complexity pruning (cont.)

I Large values of α leads to smaller trees.

I For α = 0, the solution is T0.

I To �nd Tα, we create a sequence of subtrees by removing

successively leaves whose elimination leads to the smallest

increase of
∑|T |

m=1
QRm(T).

I To �nd the optimal α, apply K -fold cross validation.

17 / 30

Example: baseball player salaries (cont.)

310 8. Tree-Based Methods

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487

6.407 6.549

4.622 5.183
5.394 6.189

6.015 5.571

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

Figur: Unpruned tree for the log salary (in 1, 000$) of a baseball player.

18 / 30

Trees vs. linear models
8.1 The Basics of Decision Trees 315

X1

X
2

X1

X
2

X1

X
2

X1

X
2

−2
−1

0
1

2
−2

−1
0

1
2

−2
−1

0
1

2
−2

−1
0

1
2

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2−2 −1 0 1 2

FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

! Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

! Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

! Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

! Trees can easily handle qualitative predictors without the need to
create dummy variables.

Figur: True decision boundary is indicated by the shaded regions. Linear
boundary vs. decision tree (boxes).

19 / 30

Node impurity

I The task of growing a classi�cation tree is very similar to that

of growing a regression tree. The only di�erence is that the

RSS is not meaningful any longer.

I We thus need to �nd alternative measures Qm(T) of node

impurity. For this purpose, de�ne

p̂j ,k =
1

|Rj |
∑

i :x i∈Rj

1{yi=k} and k(j) = arg maxk p̂j ,k

and let, e.g.,

Qm(T) =

1− p̂j ,k(j) misclassi�cation error,∑K
k=1

p̂j ,k(1− p̂j ,k) Gini index,

−∑K
k=1

p̂j ,k log p̂j ,k cross-entropy.

20 / 30

Node impurity measures

9.2 Tree-Based Methods 309

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

Entropy

Gini
 in

de
x

Misc
las

sif
ica

tio
n e

rro
r

FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxk p̂mk, the majority class in
node m. Different measures Qm(T) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1 − p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1 − p̂mk).

Cross-entropy or deviance: − ∑K
k=1 p̂mk log p̂mk.

(9.17)
For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1 − p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

Figur: Node impurity measures for two-class classi�cation, as a function
of the proportion p in class 2. (Cross-entropy has been scaled.)

21 / 30

Pros and cons with tree-based methods

I Pros:
I Easy to explain,
I able to handle categorical or numerical data,
I scales well with N

I Cons:
I Do not, in their most basic form, have the same level of

predictive accuracy as some other regression and classi�cation
approaches,

I can be very non-robust (i.e., small changes in the data leads to
completely di�erent trees).

I highly sensitive to data-representation: ill-suited to many
problems

I The predictive accuracy can however be drastically improved

using ideas as bagging and random forests discussed in the

following.

22 / 30

Today

Overview

Regression trees

Pruning

Bagging, random forests

23 / 30

Prelude: the bootstrap

I Given an i.i.d. sample {x i}Ni=1
from a probability density p, the

bootstrap algorithm is based on the approximation

p̂(x) =
1

N

N∑

i=1

δx i (x)

of p.

I Given p̂, a new sample set {x∗i }Ni=1
with approximately the

same distribution as {x i}Ni=1
can be formed by sampling from

p̂, i.e., by drawing repeatedly N times among {x i}Ni=1
with

replacement.

I In machine learning applications, this can be used for creating

arti�cial replicates of the training set.

24 / 30

Bagging

I In the case of regression, we have approximated the target

function using

f (x) =
J∑

j=1

ȳRj
1Rj

(x),

where the partition {Rj}Nj=1
is formed using a decision tree.

I The decision trees discussed above su�er generally from high

variance, i.e., building the tree using a di�erent training set

may lead to a quite di�erent f .

I Better would be to use B independent training sets of similar

size, each yielding a tree fb, and use the model

favg(x) =
1

B

B∑

b=1

fb(x).

25 / 30

Bagging (cont.)

I We use bootstrap sampling for creating arti�cially B such

training sets, each yielding a tree f ∗b , and use the model

fbag(x) =
1

B

B∑

b=1

f ∗b (x).

I The trees f ∗b are grown deep without pruning, implying that

each tree has high variance but low bias.

I In the classi�cation case, we can record the class predicted by

each of the B trees, and take the most popular vote.

26 / 30

Bagging (cont.)

I The number of trees B is not a critical parameter with

bagging; using a very large value of B will not lead to

over�tting.

I The reason is that the probability of making an error converges

as B →∞.

I The probability of making an error depends also on the

expected correlation between errors of di�erent trees fb(x) and

fb′(x) when (x ,Y) varies.

27 / 30

Some theory

I Indeed, in the classi�cation case, let the margin function be

m(x , y) =
1

B

B∑

b=1

1{fb(x)=y} −max
k 6=y

1

B

B∑

b=1

1{fb(x)=k}

I Moreover, de�ne the generalization error by

PE = P(m(x ,Y) < 0).

I breiman:2001 (breiman:2001) shows that PE converges as

B →∞. In addition, the PE can be bounded as

PE ≤ (1− s2)ρ/s2,

where, roughly, s is the limiting margin function�the

strength�and ρ describes the expected correlation between

the trees' errors as (x ,Y) varies.

28 / 30

Random park ⇒ random forest

I In order to decorrelate the trees, it is desirable so build them

di�erent.

I Say that there is one strong predictor x i along with a number

of other moderately strong predictors ⇒ most or all of the

trees will use this strong predictor in the top split ⇒ all trees

will look quite similar ⇒ highly correlated predictions.

I Thus, at each split, consider only splitting of a randomly

chosen subset of m ≤ d predictors.

I Therefore, on average (d −m)/d of the splits will not even

consider the strong predictor, and so other predictors will have

more of a chance.

I Typically, one uses m ≈
√
d ; m = d corresponds to standard

bagging.

29 / 30

Example: cancer-type prediction

322 8. Tree-Based Methods

0 100 200 300 400 500

0.
2

0.
3

0.
4

0.
5

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
E

rr
or

m=p
m=p/2
m= p

FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.

fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.
We have just described the process of boosting regression trees. Boosting

classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.
Boosting has three tuning parameters:

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls the
rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted

stump
ensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls

interaction
depth

Figur: Here p = 500. The test error as a function of the number of trees.
Each colored line corresponds to a di�erent value of m. A single
classi�cation tree has an error rate of 45.7%.

30 / 30

	Overview
	Regression trees
	Pruning
	Bagging, random forests

