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Setup

Let Y be a real-valued random variable. Given x € X c RY,
we want to predict the value of Y.

To understand how different values of x influence Y, we have
N € N* examples (x;, yi)ic1..n)-
The variable Y can have discrete or continuous values,
corresponding respectively to classification and regression
problems.
We consider here binary decision trees. A decision tree
partitions X into simple regions (R;);c1..s- For
x = (x!,...,x9) € R? and j such that x € R;, the value
predicted by the tree is

» the most represented class y among {x; € R;} in classification

problems,
» the average of {yj|x; € R;,i € [1..N]} in regression problems.




Setup

» Each node n of the tree is associated to a subset R, of X,
which is further split into two regions through a test
comparing x' for some i € [1..d] with a value ¢ € R. Then for
I and r left and right children of n,

> R = {x € Ryx < ¢}
> R, i={x € Ry|x' > ¢}

Years < 4.5
T

Hits <[117.5
5.11

6.00 6.74

Figur: A regression tree for predicting the log salary (in 1,000%) of a
baseball player, based on the number of years played and the number of
hits made in the previous year. 5/30
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Figur: The three-region partition provided by the regression tree in the

previous figure.
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Example: spam classification R

Figur: Tree for spam classification. Split variables are shown in blue.
CAPMAX and CAPAVE = maximal and average length of the longest
uninterrupted sequences of capital letters, respectively.




Questions

» How do we construct such trees?
» How large should a tree be?

» What are the pros and cons of tree-based methods?
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Regression trees vs. linear regression

» We generally want to approximate a relation Y = f(x) +«.

» Linear regression involves linear functions

p
f(X) :Bo—FZﬁij.

Jj=1

» We will instead consider
J
fF(x) =) milg(x),
j=1

for a partition {R;}jcf1..) of X.




Building a regression tree: cost function

» We will construct the tree by minimizing

N

RSS(ml,...,mJ, Rl,...,RJ) = Z(yl - f(X,'))2
i=1

J
=D > i fx) =) (vi — mj)?.

Jj=lixeR; Jj=1ix;eR;

» For each j, the m; minimizing the sum of squares
2 .
Zi:x,-eRj(yi — mj)* is always

mj = yg. = average over all y; such that x; € R;.

» To find the minimizing R; is however computationally
infeasible in general.
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Building a regression tree: top-down minimization

» Thus, in order to find regions {Rj}Jle minimizing

J
> i—r)

j:]. fZXiERj

-~

Qr;

J
we proceed with a top-down, greedy approach.
> In the first step, when splitting X into

Ri(k,s) ={x €X:xK<s} and Rui(k,s)={xecX:xk>s},

we minimize
QRy(k,s) T QRa(k,s)

w.r.t. k and s.
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Building a regression tree: top-down minimization (cont.)

» For a given k, the optimal s is quite easily found by scanning
though the data.

» Repeating for all k € [1..d] yields an optimal pair (k,s).

» Having found the best split, we partition the data into the two
resulting regions and repeat the splitting process on each of
these. And so forth.

» We stop growing the tree when some stopping criterion is
reached, e.g., when no region contains more than five training
data.
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Bias versus variance

> The tree size is a tuning parameter governing the model’s
complexity.

> A too large tree leads to overfitting (high variance on test
sets), while a too small tree leads to high bias.

» The optimal tree size should be determined adaptively from
the data.

» One possibility is to split a node only if the split implies an
RSS reduction exceeding a certain threshold; this is however
treacherous in top-down minimization, as an apparently
meaningless split may imply a good split later on.
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Cost complexity pruning

» Grow a large tree To while storing the different Qg associated
with each split.

» We define a subtree T C Ty obtained by pruning Ty in a
bottom-up fashion.

» Let | T| denote the number of leaves R,,(T) in T.
» Define, for some o > 0, the cost function
IT|
Ca(T) =D Qro(ry +ITl,
m=1
where the Qg (1) are available from the first step.

» The idea is to find a subtree T, minimizing Co(T).
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Cost complexity pruning (cont.)

> Large values of « leads to smaller trees.

» For o = 0, the solution is Ty.

» To find T,, we create a sequence of subtrees by removing
successively leaves whose elimination leads to the smallest
increase of Z|rr7111 QRn(T)-

» To find the optimal «, apply K-fold cross validation.




Example: baseball player salaries (cont.)

Years < 45
f
RBI 4605 Hits {1175
Putouls <82 Years|<35
Years|<35
5.487 5304 6189
4622 5183
Walks|< 435 Walks|< 52.5
Runs 475 [ RBI 4805
6.407 <
6015 5571 654 ean<Ey 2280

6450 7.007

Figur: Unpruned tree for the log salary (in 1,000%) of a baseball player.




Trees vs. linear models
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Figur: True decision boundary is indicated by the shaded regions. Linear
boundary vs. decision tree (boxes).
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Node impurity

» The task of growing a classification tree is very similar to that
of growing a regression tree. The only difference is that the
RSS is not meaningful any longer.

» We thus need to find alternative measures Qn,(T) of node
impurity. For this purpose, define

1

bj .k = R Z lyy,—ky and k(j) = arg max, pj«
J i:x;€ER;
and let, e.g.,
1—p; k(i) misclassification error,

Qm(T) = Z/’le pjx(1 — pjk) Gini index,
-5 pj i log pj.x  cross-entropy.
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Node impurity measures
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Figur: Node impurity measures for two-class classification, as a function
of the proportion p in class 2. (Cross-entropy has been scaled.)




Pros and cons with tree-based methods

> Pros:

» Easy to explain,

» able to handle categorical or numerical data,

» scales well with N

» Cons:

» Do not, in their most basic form, have the same level of
predictive accuracy as some other regression and classification
approaches,

» can be very non-robust (i.e., small changes in the data leads to
completely different trees).

» highly sensitive to data-representation: ill-suited to many
problems

» The predictive accuracy can however be drastically improved
using ideas as bagging and random forests discussed in the
following.
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Prelude: the bootstrap

» Given an i.i.d. sample {x;}", from a probability density p, the
bootstrap algorithm is based on the approximation

of p.

» Given p, a new sample set {x} ;\1:1 with approximately the
same distribution as {x;}"_; can be formed by sampling from
p. i.e., by drawing repeatedly N times among {x;}", with
replacement.

» In machine learning applications, this can be used for creating

artificial replicates of the training set.
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Bagging

> In the case of regression, we have approximated the target
function using

J
x) =Y JrIr(x)
=1

where the partition {R} Y, is formed using a decision tree.

» The decision trees discussed above suffer generally from high
variance, i.e., building the tree using a different training set
may lead to a quite different f.

» Better would be to use B independent training sets of similar
size, each yielding a tree f,, and use the model

Uo\
Mm




Bagging (cont.)

» We use bootstrap sampling for creating artificially B such
training sets, each yielding a tree £, and use the model

Mm

fbag
b:

» The trees f, are grown deep without pruning, implying that
each tree has high variance but low bias.

» In the classification case, we can record the class predicted by
each of the B trees, and take the most popular vote.
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Bagging (cont.)

» The number of trees B is not a critical parameter with
bagging; using a very large value of B will not lead to
overfitting.

» The reason is that the probability of making an error converges
as B — .

» The probability of making an error depends also on the
expected correlation between errors of different trees f,(x) and
fy(x) when (x,Y) varies.
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Some theory

> Indeed, in the classification case, let the margin function be

B
(x,y) = Zﬂ{fb T;;*Zﬂ{fb
b:

» Moreover, define the generalization error by
PE = P(m(x, Y) < 0).

» breiman:2001 (breiman:2001) shows that PE converges as
B — oo. In addition, the PE can be bounded as

PE < (1 —s%)p/s?,

where, roughly, s is the limiting margin function—the
strength—and p describes the expected correlation between
the trees’ errors as (x, Y) varies.
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Random park = random forest

» In order to decorrelate the trees, it is desirable so build them
different.

» Say that there is one strong predictor x' along with a number
of other moderately strong predictors = most or all of the
trees will use this strong predictor in the top split = all trees
will look quite similar = highly correlated predictions.

» Thus, at each split, consider only splitting of a randomly
chosen subset of m < d predictors.

» Therefore, on average (d — m)/d of the splits will not even
consider the strong predictor, and so other predictors will have
more of a chance.

» Typically, one uses m ~ v/d; m = d corresponds to standard
bagging.




Example: cancer-type prediction

Test Classification Error
0.3
|

0 100 200 300 400 500
Number of Trees
Figur: Here p = 500. The test error as a function of the number of trees.

Each colored line corresponds to a different value of m. A single
classification tree has an error rate of 45.7%.
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