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Abstract. The Variance Inflation Factor (VIF) and tolerance are both widely used measures
of the degree of multi-collinearity of the ith independent variable with the other independent
variables in a regression model. Unfortunately, several rules of thumb – most commonly the
rule of 10 – associated with VIF are regarded by many practitioners as a sign of severe or
serious multi-collinearity (this rule appears in both scholarly articles and advanced statistical
textbooks). When VIF reaches these threshold values researchers often attempt to reduce the
collinearity by eliminating one or more variables from their analysis; using Ridge Regression
to analyze their data; or combining two or more independent variables into a single index.
These techniques for curing problems associated with multi-collinearity can create problems
more serious than those they solve. Because of this, we examine these rules of thumb and
find that threshold values of the VIF (and tolerance) need to be evaluated in the context of
several other factors that influence the variance of regression coefficients. Values of the VIF
of 10, 20, 40, or even higher do not, by themselves, discount the results of regression analy-
ses, call for the elimination of one or more independent variables from the analysis, suggest
the use of ridge regression, or require combining of independent variable into a single index.
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coefficients

1. Introduction

Collinearity can increase estimates of parameter variance; yield models in
which no variable is statistically significant even though R2

y is large; pro-
duce parameter estimates of the “incorrect sign” and of implausible mag-
nitude; create situations in which small changes in the data produce wide
swings in parameter estimates; and, in truly extreme cases, prevent the
numerical solution of a model (Belsley et al., 1980; Greene, 1993). These
problems can be severe and sometimes crippling.

We use R2
i to represent the proportion of variance in the ith indepen-

dent variable that is associated with the other independent variables in the
model. It is an excellent measure of the collinearity of the ith independent
variable with the other independent variables in the model. Tolerance for
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the ith independent variable is 1 minus the proportion of variance it shares
with the other independent variable in the analysis (1 − R2

i ). This repre-
sents the proportion of variance in the ith independent variable that is not
related to the other independent variables in the model. The Variance Infla-
tion Factor (VIF) is the reciprocal of tolerance: 1/(1 −R2

i ).
1 The VIF has

an intuitive interpretation in terms of the effects of R2
i on the variance of

the estimated regression coefficient for the ith independent variable.
Unfortunately practitioners often inappropriately apply rules or criteria

that indicate when the values of VIF or tolerance have attained unaccept-
ably high levels. Not uncommonly a VIF of 10 or even one as low as 4
(equivalent to a tolerance level of 0.10 or 0.25) have been used as rules
of thumb to indicate excessive or serious multi-collinearity.2 These rules
for excessive multi-collinearity too often are used to question the results of
analyses that are quite solid on statistical grounds.

When the VIF reaches these threshold levels, researchers may feel com-
pelled to reduce the collinearity by eliminating one or more variables from
their analysis; combining two or more independent variables into a sin-
gle index;3 resorting to Ridge Regression (a biased regression technique
that can reduce the variance of the estimated regression coefficients); or, in
the role of a manuscript reviewer, rejecting a paper because VIF exceeds a
threshold value. This is the case, even when these remedies are not always
suggested by the sources cited in note 2.

Below we address some interrelated problems that can arise when rules
of thumb associated with particular levels of tolerance and/or VIF are
used. (1) There is an exclusive focus on multi-collinearity when assessing
the accuracy of regression coefficients and the “stability” of results from
a regression analysis. (2) Cases in which the null hypothesis is rejected (or
in which the accuracy of the estimated regression coefficient is sufficient)
are treated in the same manner as cases in which the null hypothesis is
not rejected (or in which the confidence interval for the regression coeffi-
cient is too wide to draw useful conclusions). (3) Researchers only exam-
ine those remedies to the effects of multi-collinearity that involve reducing
multi-collinearity.

2. Exclusive Focus on Multi-collinearity

The VIF indicates how much the estimated variance of the ith regression
coefficient is increased above what it would be if R2

i equaled zero: a sit-
uation in which the ith independent variable is orthogonal to the other
independent variables in the analysis. VIF provides a reasonable and intu-
itive indication of the effects of multi-collinearity on the variance of the
ith regression coefficient. Focusing on the effects of multi-collinearity on
sample fluctuations of parameters, however, can seduce researchers into
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ignoring other factors (besides multi-collinearity) that affect the stability
of regression coefficients. These other factors can ameliorate or exacerbate
the effects of multi-collinearity. Goldberger (1991), for example, notes the
following quote from Johnston (1984: 250): “More data is no help in multi-
collinearity if it is simply ‘more of the same.’ What matters is the structure
of the X′X matrix, and this will only be improved by adding data which
are less collinear than before.” This statement is indisputable, if it refers to
multi-collinearity by itself; but unless the collinearity is perfect, increasing
the sample size (using more cases of the same sort) will reduce the variance
of the regression coefficients. More of the same can certainly be helpful; a
new analysis based on the additional cases of the same sort should provide
more reliable point estimates and smaller confidence intervals.

Goldberger (1991) notes that while the number of pages in econometrics
texts devoted to the problem of multi-collinearity in multiple regression is
large the same books have little to say about sample size. Goldberger states:
“Perhaps that imbalance is attributable to the lack of an exotic polysyllabic
name for ‘small sample size.’ If so, we can remove that impediment by intro-
ducing the term micronumerosity” (Goldberger, 1991: 248–249).4 His aim is
not to introduce “micronumerosity” into the lexicon of statistics, but is to
contest the predominant focus on multi-collinearity in relation to the infla-
tion of the variance of regression coefficients and the “stability” of results
from a regression analysis. When the focus is on the variance of a regression
coefficient and the stability of result: the sample size, the proportion of the
variance in the dependent variable associated with the independent variables,
the variance of the independent variable whose coefficient is of concern, and
the multi-collinearity of the independent variable of concern with the other
independent variables are all important. Goldberger (1991: 251) notes, “In
the classic regression (CR) model all of the consequences of multi-collinearity
are reflected in V (b)=σ 2Q−1 or in its unbiased estimator V̂ (b)= σ̂ 2Q−1.”5

3. Specifying the Effects of Several Factors on the Variance
of the Regression Coefficients

Equation (1) represents the formula for the variance of the regression
coefficient for the ith independent variable when the population residual
variance is known (we show how this formula is derived in Appendix):

σ 2 (bi)= σ 2
ε(

1−R
2
i

) ∑
x2

i

, (1)

where σ 2 (bi) the variance of the ith regression coefficient, σ 2
ε the resid-

ual variance, R
2
i the squared multiple correlation of the ith independent

variable regressed on the other independent variables in the analysis, and
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∑
x2

i is the sum of the squared deviations for the ith independent variable
around its mean.

In (2), we substitute an unbiased estimate of the population residual
variance for σ 2

ε (see Appendix) yielding a formula for the estimated the
variance of the ith regression coefficient:

σ̂ 2 (bi)=

[
(1−R

2
y)×

∑
(Yi − Ȳ )

2

(n−k−1)

]

(
1−R

2
i

)×∑x2
i

, (2)

where σ̂ 2 (bi) is the estimated variance of the regression coefficient for
the ith independent variable, R

2
y is the squared multiple correlation of the

dependent variable regressed on all of the independent variables in the
model,

∑(
Yi −Ȳ

)2
is the sum of the squared deviations of the dependent

variable around its mean, n is the number of cases on which the analysis
is based, and k is the number of independent variables in the analysis. As
noted in the Appendix, as n increases the expected value of the term in
square brackets in (2) remains an unbiased estimate of the residual vari-
ance. Below we use (2) to show the affects of both R

2
i and R

2
y on the esti-

mated variance of the ith regression coefficient.

3.1. effect of the variance inflation factor

Multiplying the numerator and denominator of (2) by 1/(1−R
2
i ) yields

σ̂ 2 (bi)=

[
(1−R

2
y)×

∑
(Yi−Ȳ )

2

(n−k−1)

]

∑
x2

i

× 1
(
1−R

2
i

)

=

[
(1−R

2
y)×

∑
(Yi−Ȳ )

2

(n−k−1)

]

∑
x2

i

×VIF, (3)

where VIF, which is defined as 1/(1 − R
2
i ), indicates the multiplicative

increase in the variance of the regression coefficient of the ith independent
variable above what it would be if R

2
i =0.

There is a sense in which the VIF has a natural metric – comparing
the effects of the proportion of variance a particular independent variable
shares with the other independent variables to the situation in which it
shares none of its variance with the other independent variables. This base-
line, however, is likely to occur only in an experiment designed so that the
correlation among the independent variables is zero.
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3.2. effect of R
2
y

We use the situation in which the dependent variable is linearly unrelated
to the independent variables in the model (R2

y =0) as a “natural metric” for
deriving a measure of the effects of R

2
y on the variance of the estimated

regression coefficients. This is the typical null hypothesis in most studies,
and this measure highlights the relationship of explained variance (R2

y) to
the variance of the regression coefficients. Using the same general approach
that we used to derive VIF. We divide the numerator and denominator of
(2) by 1/(1−R2

y) and simplify:

σ̂ 2 (bi)=

[∑
(Yi−Ȳ )

2

(n−k−1)

]

(
1−R

2
i

)×∑x2
i

× (1−R
2
y

)=

[∑
(Yi − Ȳ )

2

(n−k−1)

]

(
1−R

2
i

)×∑x2
i

×VDF
(
R

2
y

)
. (4)

Equation (4) indicates that increases in R
2
y deflate the size of the estimated

variance of the ith regression coefficient. We, therefore, label (1 − R
2
y), as

a Variance Deflation factor (VDF): VDF(R
2
y). If R

2
y = 0.80 then the pro-

portion of the variance that is unexplained is 0.20, and the variance of
estimated regression coefficient is 0.20 (one-fifth) as large as it would have
been if the dependent variable had been linearly unrelated to the indepen-
dent variables. The variance of the estimated regression coefficient has been
reduced by 80%.

3.3. effect of the sample size

To facilitate our discussions of the effects of the sample size, we examine
the expected value of

∑
x2

i in (2), where xi = (
Xi − X̄·

)
. We note that

E
[∑(

Xi − X̄·
)2

/(n−1)
]
=σ 2

i , where σ 2
i is the population variance for the

ith variable. Therefore, the expected value of
∑

x2
i in (2) is σ 2

i × (n−1).
Conceptually, we may write the denominator for (2) as:6

(
1−R

2
i

)×σ 2
i × (n−1) . (5)

All other things being equal, increases in the value of n or σ 2
i decrease the

value the estimated variance of the ith regression coefficient.
There is no “natural metric” to use in describing the effects of shifts in

the sample size on the variance of the regression coefficients, so we will
compare shift in the sample size to a “baseline” sample size that we label
as nb. The comparison is then between a sample size that is nb in compar-
ison to a sample that is of size np. We define the ratio of (np −1)/(nb −1)

as p. If p is greater than 1, the result is variance deflation; if p is less



678 ROBERT M. O’BRIEN

than one the result is variance inflation. The Variance (inflation or defla-
tion) Factor based on sample size can then be written as follows:

VF (n)= 1
(
np −1

)/
(nb −1)

= 1
p

, (6)

where (1/p) indicates the effect of the change in sample size on the vari-
ance of the regression coefficient. If the baseline sample is 100 and the
comparison sample is 397, then the estimated variance of the regression
coefficients is expected to be one fourth [(397 − 1)/(100 − 1)] as large as
in the comparison sample as it is in the baseline sample (all other things
being equal). Decreasing the sample size from 101 to 26 increases the vari-
ance of the regression coefficient by a factor of 4.

3.4. effect of the variance of the independent variable

For the variance of the independent variable there again is no “natural
metric,” so we compare shifts in the variance of the ith independent vari-
able to a “baseline” variance that we label as σ 2

ib. The comparison is to a
variance that is that is q times as large as the baseline variance. If the com-
parison variance is denoted as q ×σ 2

ib, we can write the VF based on the
variance of the independent variable as follows:

VF
(
σ 2

i

)= 1

q σ 2
ib

/
σ 2

ib

= 1
q

. (7)

If the variance of the independent variable were four times larger than the
baseline variance, the variance of the regression coefficient would be one
fourth as large as the variance based on the baseline model. If the variance
were half the size of the baseline variance, the variance of the regression
coefficient would be increased by a factor of 2.

3.5. the value of t and σ̂ 2 (bi)

The value of t certainly does not affect the variance of the ith regres-
sion coefficient, but we will use the value of t and its dependence of the
variance of the ith regression coefficient in the next section. The test for the
statistical significance of a regression coefficient is typically a t-test based
on the difference between the point estimate of the ith regression coefficient
(bi) and the null hypothesis value of bi [bi(H0)] divided by the estimated
standard error of the ith regression coefficient.

t = b1 −b1 (H0)√
σ̂ 2 (bi)

. (8)
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The difference between the null hypothesis value and the observed value
does not affect the estimated variance of the regression coefficient or the
confidence interval for an estimate – but it can affect the decision to reject
or fail to reject the null hypothesis at a particular level of statistical sig-
nificance (or whether the confidence interval includes the null hypothesis
value).

If the variance of the ith regression coefficient is s times as large as in
(8), the square root of its variance is the square root of s times as large as
it is in (8). Therefore, if the variance of the ith regression coefficient is s

times as large as it is in (8), t is 1/
√

s as large as it is in (8). If σ̂ 2 (bi) is
quadrupled, t is 1/2 [= 1/

√
4] as large as it is in (8); and if σ̂ 2 (bi) is one-

fourth as large, then t is doubled.

4. Variance Inflation Factors in Context

The previous section describes several factors that influence the estimated
variance of the ith regression coefficient and shows how changes in these
factors are reflected in the estimated variance of the regression coefficients.
Knowing these factors and their effects indicates the degree to which they
can be used to ameliorate the impact of multi-collinearity on the accu-
racy of estimated regression coefficients. In any given situation, however, it
may or may not be possible to change these factors. Sometimes, for exam-
ple, the size of the sample is set (all U.S. cities of size 100,000 or more
in 1980). Dramatic changes in the amount of variance in the dependent
variable explained by the independent variables typically are not easy to
accomplish using well motivated models. Whatever the situation, however,
the discussion in the previous section provides background on the degree
to which several factors can offset the effects of multi-collinearity on the
variance of regression coefficients.

Table I describes three hypothetical analyses to provide two of examples
of how these effects can work in practice. The main goal of these exam-
ples is to put the interpretation of VIF into a context that does more than
focus on the size of VIF and on the rules of 4 or 10 or some other arbi-
trary number designed to indicate “excessive multi-collinearity.”

The situations we could depict are far more varied than those shown
in Table I. We use a baseline analysis in which R

2
i = 0.20, a VIF of 1.25;

R
2
y = 0.40, a VDF(R

2
y) of 0.60, the sample size is 100, and the t-value for

the ith regression coefficient is 3.0 (p < 0.01).7 We will assume that there
are three independent variables and that σ 2

i is the same across all of the
analyses.8 Our purpose is to show that the rules of thumb associated with
VIF (and tolerance), which focus on the variance of the ith regression
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Table I. Baseline and comparison analyses and the effects of various factors on
the estimated variance of regression coefficients.

Analysis R
2
i VIF R

2
y VDF

(
R

2
y

)
n VF(n) ti

Baseline 0.20 1.25 0.40 0.60 100 1.00 3.00
Comparison 1 0.95 20.00 0.90 0.10 397 0.25 3.67
Comparison 2 0.975 40.00 0.95 0.05 1585 0.0625 7.35

coefficient, should be put into the context of the effects of other factors that
affect the variance of the ith regression coefficient.

The results from the baseline analysis in Table I that relate to the ith
regression coefficient would not, by themselves, trouble most researchers. The
ith regression coefficient is statistically significant (p<0.01) and VIF is only
1.25 (well below the rules of thumb of 4 or 10). The sample size is not large,
but seems adequate given the number of independent variables in the analy-
sis. Researchers in most areas would not quibble with an R

2
y of 0.40.

On the other hand, questions might be raised about the results from
a regression analysis in comparison 1, since the VIF for that analysis is
20 (well above the level suggested by the rules of 4 or 10). Note that in
this analysis, since the R

2
y =0.90, the VDF

(
R

2
y

)
is 0.10 rather than the 0.60

baseline model. All other things being equal, the variance of the regres-
sion coefficient in analysis 1 would be one-sixth (= 0.10/0.60) as large as
in the baseline analysis. The sample size is 4 × (n− 1)b larger in compari-
son 1 than in the baseline analysis, this factor alone would result in a var-
iance of the regression coefficient in analysis 1 that is one-fourth as large
as that for the baseline model (all other things being equal). These two
factors are multiplicative in their reduction of the variance of the regression
coefficients. The R

2
y in analysis 1 would reduce the variance to one-sixth

of what it is in the baseline model and that variance would be reduced by
one-fourth by the sample size. If these two factors were the only differences
between the baseline and comparison 1 analyses, the variance of the regres-
sion coefficients in analysis 1 would be 0.0417 (=1/6×1/4=1/24) as large
as those in the baseline model.

We know from Table I, however, that all other things are not equal,
since VIF for the comparison group is 20 while it is only 1.25 in the base-
line analysis. VIF increases the variance of the ith regression coefficient for
this comparison analysis, relative to the baseline analysis, by a factor of 16
(=20/1.25). Overall, considering R

2
i , R

2
y , and the sample size, the variance

of the ith regression coefficient in the comparison model is smaller by a
factor of 0.67 (=16/24) than that of the baseline model. If all other things
were equal, the value of t in this case would be 3.67 [=3.00× (1/

√
0.67)].
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Has the VIF of 20, which is based on the collinearity of the ith
independent variable with the other independent variables, made us ques-
tion the results in comparison 1 even though we are comfortable with the
results from the baseline model? The t-value for the ith regression coeffi-
cient in the comparison 1 analysis is larger than in the baseline analysis
and, correspondingly, has a confidence interval that is narrower for this
coefficient. We should be more confident about the value of the ith regres-
sion coefficient in analysis 1 than in the baseline model. We could just as
easily question the statistical significance of the relationship in the baseline
model because it is based on an analysis in which R

2
y is only 0.40 or in

which the sample size is only 100. This would, of course, be inappropriate.
These factors have already been taken into account in (1).

Comparison 2 is more extreme than comparison 1, but I should note
that a colleague and I routinely analyze data with R

2
y values in excess of

0.95. In comparison 2 VIF is 40 and the variance deflation factor due to
R

2
y is 0.05. The R

2
y of comparison 2 reduces the variance of the regression

coefficients in this analysis to 1/12 of the variance of the baseline analysis
(=0.05/0.60=1/12). The number of cases in comparison 2 is 16× (n−1)b,
so that this factor by itself deflates the variance of the regression coeffi-
cients to 1/16 of the variance in the baseline analysis. Together these two
effects result in a variance of the estimated regression coefficient in anal-
ysis 2 that is 0.0052 [= (1/12) × (1/16) = 1/192] the size of the variance
in the baseline analysis (if all other things were equal). But again, not all
other things are equal. In the baseline analysis VIF is only 1.25, while the
VIF for the comparison analysis is 40. This inflates the variance of the ith
regression coefficient in comparison 2 by a factor of 32 [= 40/1.25] rela-
tive to the baseline model. Still the variance of the ith regression coefficient
in comparison 2 is only 16.67% (= 32/192) as large as it is in the base-
line model. If all other things were equal, the t-value would be 7.35 for
the comparison analysis. Again, we might ask whether we should be more
comfortable with the results from the baseline model compared to those
from comparison analysis, because VIF in the comparison 2 analysis is 40.9

Even with VIF values that greatly exceed the rules of 4 or 10, one can
often confidently draw conclusions from regression analyses. How confident
one can be depends upon the t-values and/or confidence intervals, which
the variance of the regression coefficients help generate. The practice of
automatically questioning the results of studies when the variance infla-
tion factor is greater than 4, 10, or even 30 is inappropriate. Using VIF
for this purpose is as inappropriate as questioning studies that are based
on R

2
y values that are less than “the rule of 0.40.” Or as inappropriate

as questioning the results of studies based on sample sizes less than 200,
because they do not meet “the rule of 200.”
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5. Treating Rejection and Non-Rejection in the Same Manner

To the extent that a researcher’s concern is the null hypothesis: the
situation in which the null hypothesis is rejected and the situation in which
it is not rejected are not the same in terms of our concern about the values
of R

2
i , R

2
y , n, and σ 2

i . Similarly, to the extent that a researcher’s concern is
with the confidence interval: the situation in which the confidence interval
is small enough for the researcher’s purposes is not the same as the situa-
tion in which it is too wide for the researcher’s purposes. When the con-
fidence interval is small enough or the null hypothesis has been rejected
even though R

2
y is small and/or R

2
i is large and/or σ 2

i is small and/or n is
small; we have “dodged a bullet.” In this situation, we have rejected the
null hypothesis or have an accurate enough estimate of the ith regression
coefficient in the face of: a high degree of multi-collinearity, a model that
explains little of the variance in the dependent variable, modest variance of
the ith independent variable, and/or a small sample size.

The reason for this asymmetry of concern can be seen clearly if we focus
on the power of a statistical test. Whether or not the null hypothesis is
rejected, a large R

2
i , small R

2
y , small n, and small σ 2

i reduce the statistical
power of an analysis. Since power is the probability of rejecting the null
hypothesis when the null hypothesis is false, it depends not only on the
variance of the ith regression coefficient (which R

2
i , R

2
y , n, and σ 2

i affect),
but also on the level of statistical significance chosen and value of the
population parameter being estimated (the difference between this popula-
tion value and the null hypothesis value). When the null hypothesis is not
rejected or the confidence interval is too wide, then anything that increases
the variance of the regression coefficient is crucially important and one
may argue that the power of the hypothesis test was too low because of
one or more of these factors.

Belsley et al. (1980) also note the asymmetry between these situations.
After more than 30 pages of discussing various ways of detecting and
assessing the damage done by multi-collinearity they state (1980: 116),

If s2 [our σ̂
2
ε ] is sufficiently small, it may be that particular var(bk)’s

[our σ̂ 2 (bi)] are small enough for specific testing purposes in spite of
. . . near collinearity. . . Thus, for example, if an investigator is only
interested in whether a given coefficient is significantly positive, and
is able, even in the presence of collinearity, to accept that hypothe-
sis on the basis of the relevant t-test, then collinearity has caused no
problem. Of course, the resulting forecasts or point estimates may have
wider confidence intervals than would be needed to satisfy a more
ambitious researcher, but for the limited purpose of the test of sig-
nificance initially proposed, collinearity has caused no practical harm
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. . . These cases serve to exemplify the pleasantly pragmatic philoso-
phy that collinearity does not hurt so long as it does not bite.

We subscribe to this philosophy and have taken the pragmatic approach
of focusing our concern on the effects of collinearity (and other factors)
on the variance of the estimated regression coefficients. If one is inter-
ested in the effect of multi-collinearity on the ith regression coefficient,
then VIF is a perfectly adequate indicator of the degree of multi-collin-
earity. If a regression coefficient is statistically significant even when there
is a large amount of multi-collinearity – it is statistically significant in
the “face of that collinearity.” It is no more appropriate to question its
statistical significance because there is multi-collinearity than to question
a statistically significant relationship (at a specified level) because the vari-
ance explained by the model is low.

6. Suggested Remedies for Reducing Collinearity

One of the problems with focusing predominantly on the inflation of the
variance of the regression coefficient due to multi-collinearity (VIF) is that
it leads researchers to focus their attention on reducing multi-collinearity
as the solution to the problem of an inflated variance for a regression
coefficient. The literature includes several suggestions that directly address
the problem of reducing multi-collinearity. Such attempts, however, may do
more harm than good.

One suggestion is to respecify the model by eliminating one or more of
the independent variables that are highly correlated with the other indepen-
dent variables. The problem with this solution is that dropping Xj from the
equation means that the ith regression coefficient no longer represents the
relationship between the Y and Xi controlling for Xj and any other inde-
pendent variables in the model. The model being tested has shifted, and
this often means that the theory being tested by the model has changed.
Simply dropping Xj because it is highly correlated with the Xi or using
step-wise regression to select variables (typically the selected variables are
not “too highly correlated” with each other) leads to a model that is not
theoretically well motivated.

At times, however, it may be reasonable to eliminate or combine highly
correlated independent variables, but doing this should be theoretically moti-
vated. For example if we were to regress student GPA on whether students
come from an intact home, their sex, their score on the Iowa Achievement
Test (IAT) and their score on the Oregon Achievement Test (OAT), we might
find that much of the variance in the IAT was shared with the other inde-
pendent variables in the analysis and that much of the variance in the OAT
was shared with the other independent variable – primarily based on a strong
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relationship between the IAT and the OAT. In this case, these two variables
probably are both measuring academic achievement and to have them both
in the same regression model is to commit the partialling fallacy (Gordon,
1968); that is, controlling the relationship between an independent variable
and a dependent variable for itself.10 In this example, the specification of the
equation that includes both the IAT and the OAT would mean that we essen-
tially were asking about the relationship was between GPA and Achievement
Test Scores controlling for Achievement Test Scores. If both of these mea-
sures of achievement were conceptually similar, we could combine them into
a single measure and use the newly created variable in the analysis. This
would solve the collinearity problem created by the high correlation between
these two variables and typically give us a more reliable estimate of student
achievement. Alternatively, we could drop one of these variables from the
analysis (if they measure the same thing) and still control the other relation-
ships in the analysis for achievement.

Ridge regression is yet another technique used to reduce collinear-
ity. This technique biases the estimated regression coefficients, but reduces
the level of multicollinearity. Obenchain (1977) notes, however, that under
the assumptions of the linear model the confidence intervals centered at
the least-squares estimate, which are unbiased estimates of the regression
coefficients, are the narrowest possible estimates at their selected levels of
confidence.

7. Discussion

The VIF (and tolerance) is based on the proportion of variance the ith
independent variable shares with the other independent variables in the
model. This is a measure of the ith independent variable’s collinearity with
the other independent variables in the analysis and is connected directly to
the variance of the regression coefficient associated with this independent
variable. One reason for the popularity of VIF as a measure of collinear-
ity is that it has a clear interpretation in terms of the effects of collinear-
ity on the estimated variance of the ith regression coefficient: a VIF of 10
indicates that (all other things being equal) the variance of the ith regres-
sion coefficient is 10 times greater than it would have been if the ith inde-
pendent variable had been linearly independent of the other independent
variable in the analysis. Thus, it tells us how much the variance has been
inflated by this lack of independence.

Rules of thumb for values of VIF have appeared in the literature: the
rule of 4, rule of 10, etc. When VIF exceeds these values, these rules
often are interpreted as casting doubts on the results of the regression
analysis. With high values of VIF (inflated standard errors of regression
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coefficients), it is possible to have no independent variable that is statis-
tically significant even though R

2
y is relatively large. Given large standard

errors, parameter estimates may be so variable (have such large standard
errors) that they are in the opposite direction of established theory or they
may be of implausible magnitude. Large standard errors mean that small
changes in the data can produce wide swings in parameter estimates. All
of these conditions are associated with increases in the estimated variance
of the regression coefficients.11

We demonstrate that the rules of thumb associated with VIF (and tol-
erance) need to be interpreted in the context of other factors that influence
the stability of the estimates of the ith regression coefficient. These effects
can easily reduce the variance of the regression coefficients far more than
VIF inflates these estimates even when VIF is 10, 20, 40, or more. Impor-
tantly, concern with the effects of variance inflation is different in situa-
tions in which we reject the null hypothesis or when the confidence inter-
val around the ith regression coefficient is sufficiently small for the pur-
poses of the study than in situations in which the null hypothesis is not
rejected or when the confidence interval around the ith regression coeffi-
cient is too broad for the purposes of the study. In the former case, we have
found a statistically significant result, or found a narrow enough confidence
interval, in the face of variance inflation. In the latter case, we may well
have been hurt by the increased variance associated with the ith regression
coefficient.

Appendix: Derivation of the Formula for the Variance
of the Regression Coefficients

The standard formula for the variance–covariance matrix of the regression
coefficients is:

σ
(
bi bj

)=σ 2
ε

(
X′X

)−1
, (9)

where X is an n by k + 1 matrix with the first column consisting of ones
and the next k columns consisting of the values of k independent vari-
ables, and σ 2

ε is the population variance of the residuals. The derivation
of (9) can be found in Greene (1993). Below we use (9) to derive (1) and
(2) in the main text. These equations are then used to describe the effects
of multi-collinearity and other factors on the variance of the ith regression
coefficient.

Our concern is with the main diagonal elements of the inverse matrix in
(9), specifically the final k elements along the main diagonal that correspond
to the k regression coefficients (the first element represents the variance of
the intercept term). Let i represent the ith independent variable and a repre-



686 ROBERT M. O’BRIEN

sent the remaining independent variables. Greene (1993: 246) shows that the
variance of the ith regression coefficient can be represented as:

σ 2 (bi.a)=σ 2
ε

(
X′

iMaXi

)−1
, (10)

where Xi is the n by 1 vector representing the values of the n observations
on the ith independent variable and

Ma = I −Xa

(
X′

aXa

)−1 X′
a, (11)

where Xa is an n by k matrix with the first row consisting of a column vec-
tor of n ones to represent the intercept and the k − 1 remaining columns
containing all of the independent variables except for the ith independent
variable. Ma is the “residual maker” for ith independent variable; that is,
when Ma is post-multiplied by the Xi vector (or pre-multiplied by X′

i), it
produces a vector of the n residuals of ith independent variable regressed
on the other independent variables and the constant term. When Ma pre-
multiplied by X′

i and post-multiplied by Xi it produces the variance of
the ith independent variable conditional on the other independent variables
in the model. σ 2

ε is the residual variance from the regression analysis of
the dependent variable on all of the independent variables vectors and the
constant vector.

Eliminating the (·a) notation after bi in (10), since the control for all of
the other independent variables in the model is understood we write:

σ 2 (bi)=σ 2
ε

(
X′

iMaXi

)−1
. (12)

For convenience of presentation, we allow Xi to be centered around its
mean and write this mean centered vector as xi .12 Letting xxii represent
the inverse of the ith diagonal element of the inverse matrix, we may write
from (10) and (11):

xxii = (x′
i xi −x′

i X
a
(X′

a Xa )−1 X′
a xi

)−1
. (13)

Dividing and multiplying (13) by x′
ixi and rearranging the terms we write:

xxii =
(

x′
i xi

[

1− x′
i Xa

(
X′

a Xa

)−1
X′

a xi

x′
i xi

])−1

. (14)

The expression within the square brackets is equal to 1 minus the variance
of the ith independent variable associated with the regression divided by
the total variance of the ith independent variable; that is, proportion of
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variance in the ith independent variable that is associated with the other
independent variables. We can write (14) without using matrix notation as:

xxii = 1
(
1−R

2
i

)∑
x2

i

, (15)

where R
2
i is the proportion of the variance in the ith independent variable

that is associated with the other independent variables in the analysis and∑
x2

i is the sum of squares for the ith independent variable. Using (12) and
(15):

σ 2 (bi)= σ 2
ε(

1−R
2
i

)∑
x2

i

. (16)

To estimate the variance of the regression coefficients, we need an unbi-
ased estimate of σ 2

ε . We choose a form of the standard unbiased estimate
of σ 2

ε , which shows the dependence of the residual variance on the propor-
tion of the sums of squares for the dependent variable that is explained by
the regression equation. The estimate we use is:

σ̂
2
ε =

∑
i

(
Yi − Ŷ i

)2

n−k −1
=
(
1−R

2
y

)×∑(
Yi − Ȳ

)2

n−k −1
, (17)

where n is the sample size, k the number of independent variables in the
analysis, and R

2
y is the squared multiple correlation of the dependent vari-

able regressed on all of the other independent variables in the analysis.
Substituting σ̂

2
ε in (17) for σ 2

ε in (16) yields (18). This equation provides
the unbiased estimate of the variance of the ith regression coefficient:13

σ̂ 2 (bi)=

[
(1−R

2
y)×

∑
(Y − Ȳ )

2

n−k−1

]

(
1−R

2
i

)×∑x2
i

. (18)

Importantly, we note that as n increases the expected value of the term in
square brackets in (18) does not change. It remains an unbiased estimate
of the residual variance.

Notes

1. We define VIF (and tolerance) in terms R2
i (based on the variance of the ith independent

variable around its mean that is explained by the other independent variables in the
model). This defines a measure of collinearity for the centered values of the indepen-
dent variables. This is standard practice, but see Belsley (1984), Cook (1984), Gunst
(1984), Snee and Marquardt (1984), and Wood (1984) for an interesting exchange on
this topic. For most work in the social sciences the centered VIF (and tolerance) are the
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most appropriate ones for making inferences about the relationships between the indepen-
dent and dependent variables in the range for which we have data. Extrapolation outside
of that range (including extrapolation to the intercept of the raw data) must, as always,
be done with much caution.

2. Menard (1995: 66) states “A tolerance of less than 0.20 is cause for concern; a tolerance
of less than 0.10 almost certainly indicates a serious collinearity problem.” Since VIF
is the inverse of tolerance a tolerance of 0.20 corresponds to the rule of 5 and a toler-
ance of 0.10 to the rule of 10. Neter et al. (1989: 409) state “A maximum VIF value in
excess of 10 is often taken as an indication that multi-collinearity may be unduly influ-
encing the least square estimates.” Hair et al. (1995) suggest that a VIF of less than
10 are indicative of inconsequential collinearity. Marquardt (1970) uses a VIF greater
than 10 as a guideline for serious multi-collinearity. Mason et al. (1989) cite a VIF of
greater than 10 as reason for concern. The STATA manual (StataCorp 1997: 390) notes:
“However, most analysts rely on informal rules of thumb applied to VIF (see Chaterjee
and Price 1991). According to these rules, there is evidence of multi-collinearity if 1.
The largest VIF is greater than 10 (some chose the more conservative threshold value
of 30). 2. The mean of all of the VIF’s is considerably larger than 1.” Kennedy (1992:
183) states that “for standardized data VIFi >10 indicates harmful collinearity.”

3. This decision might at times justifiable on theoretical grounds, for example, if the
variables measure the same underlying concept.

4. In the same spirit, we could introduce the terms hypoheterogeneity to denote situ-
ations where the independent variable of interest has a too small a variance and
hyperscedasticity to denote situations when the regression equation explains too little
variance in the dependent variable and leaves us with too large a standard error of esti-
mate. As noted below, each of these factors affects the reliability of estimates of indi-
vidual regression coefficients in a regression analysis.

5. In Appendix, σ 2
ε (X′X)

−1 corresponds to V (b) = σ 2Q−1and σ̂ 2
ε (X′X)

−1 corresponds to
V̂ (b)= σ̂ 2Q−1.

6. We say “conceptually,” because we have substituted the expected value of
∑

x2
i for

∑
x2

i

in the denominator of (2), while leaving all of the other terms in (2) in the form of their
sample realizations.

7. We could have used a baseline model in which R
2
i and R

2
y are both zero and it would

not interfere with our demonstration. An R
2
i = 0 yields a VIF that is the standard one

for comparisons (an independent variable that is orthogonal to all of the other indepen-
dent variables in the analysis). An R

2
y =0 also fits with our “natural metric” for R

2
y . We

choose the baseline values of R
2
i =0.20 and R

2
y =0.40, because they are probably more

typical of the values we find in social research.
8. We hold σ 2

i constant between the baseline and comparison models. We think it is impor-
tant to keep this factor in mind, especially in experimental situations where the variance
of the independent variable is determined by the experimental manipulation or in situ-
ations in which the variance of the independent variable might be reduced due to sam-
pling choices. Often the variance of the independent variable is beyond the control of
the researchers.

9. Some authors note some or part of these tradeoffs, especially between multi-collinear-
ity and the variance explained in the dependent variable. For example, Freund and
Wilson (1998) suggest comparing the values of R

2
i and R

2
y . Judge et al. (1985) note that

some people use as a criterion that a problem exists if the simple correlation between
two independent variables exceeds the R

2
y . Note that we have not included the prob-

lem of reduced variance in the ith independent variable, VF(σ 2
i ), in our comparisons in

Table I. Such reductions can occur in the context of restrictive sampling, for example,
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the variance of achievement test scores is likely to much greater in high school than in
graduate school. This increases the standard error of the regression coefficient for (for
example) grade point average regressed on achievement test scores in graduate school
over high school (all other things being equal).

10. Gordon’s article is literally a citation classic (Gordon, 1987). As Gordon notes (Gordon,
1987: 18) “Often my article is misconstrued as being about multi-collinearity – mainly
a statistical issue – when it really takes up where that problem leaves off. Since my
concerns were abstractly substantive, my critique should be viewed as dealing with a
general form of what econometricians call specification error.” He examines the effects
on coefficient estimates that occur when several variables from one domain of content
are contained in the analysis (repetitiveness), when they are highly correlated with each
other (redundancy), when their correlations with the dependent variable are different.
But, as he notes, these effects need to be addressed though theory that should help the
researcher form the “correct” (or best) specification for the regression model.

11. If the tolerance is zero, we have a case of linear dependence between the ith independent
variable and the other independent variables and the solutions to the regression equa-
tion will not be unique. It could happen that solutions will not be possible if the VIF
is extremely high – but this condition is unlikely using real data.

12. Note that when we residualize a raw score by subtracting its predicted value (based on
OLS regression on a set of other variables including a column of ones for the intercept),
we obtain a set of residuals: X1 − X̂1 = e1. This set of residuals is equivalent to the set
of residuals we would obtain if we residualized the mean centered scores on the same
variable on their predicted value (based on OLS regression on the same set of other
variables including a column of ones for the intercept):x1 − x̂1 = e1. In either case, the
regression takes into consideration the mean of the dependent variable; in the case of
the mean centered dependent variable this mean is zero.

13. This form of the equation for the variance of the ith regression coefficient can be found
in Fox (1997: 121); Greene (1993: 268).
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