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Central Dogma

DNA -> RNA -> Proteins

4

[Crick, Nature 1970]



Same DNA, different configuration of proteins
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https://youtu.be/jEtaqmW3ZK4

http://youtu.be/jEtaqmW3ZK4


Pluripotent stem cells 
reprogrammed as cardiomyocytes 

6 Rebekah Gundry - MCW Medical College of Wisconsin



Same DNA, different configuration of proteins
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An organism’s proteins are closer its DNA to its phenotype,  
i.e. its observable traits 



A human cell - a system

DNA
3⋅109 base pairsmRNA

106 species

Proteins
109 species?

(Phospho-)Lipids
103 species?

Metabolites
103 species?



Proteins concentration in yeast 
range >4 orders of magnitude

[P
ic

ot
ti 

et
 a

l C
el

l 2
00

9]

9



Protein concentration in blood plasma 
range >10 orders of magnitude

[A
nd

er
ss

on
 &

 A
nd

er
ss

on
, M

C
P 

20
02

]

10



What is Bioinformatics?

Bioinformatics is an interdisciplinary field that develops 
and applies computational methods to analyze biological 
data, to make new predictions or discover new biology.



The amount of biological data is expanding exponentially 

Data growth curves of 5 major EMBL-EBI resources (European Genome-phenome Archive (EGA); European Nucleotide Archive (ENA); Proteomics data 
repository (PRIDE); Metabolomics resource (MetaboLights); and Functional genomics database (ArrayExpress) over the years 2005-2013. Source: EMBL-EBI. 
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Shotgun proteomics

IAMAPEPTIDER  
MGREATMATCHK  
ATRYIDENTIFYMEK
LMAKEMYDAYR

GLB4_LUMTE

COX1_LUMTE

ATP6_LUMTE
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Mass spectrometry
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Source

Detector

Heavier

Lighter

F=q(E+v×B)
F=ma

a(m/q)=(E+v×B)
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Tandem mass spectrometry
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Chromatograms and 
Fragmentation spectra
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Shotgun proteomics
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Peptide spectra
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Fragmentation Spectrum

b:

y:

A A
P
E
P
T
I
D

A
P
E
P
T
I

A
P
E
P
T

A
P
E
P

A
P
E

A
P

P
E
P
T
I
D
E

E
P
T
I
D
E

P
T
I
D
E

T
I
D
E

I
D
E

D
E

E

100 200 300 400 500 600 700 800 9000

m/z [Thomson]

A|P|E|P|T|I|D|E

21



Peptide fragmentation 
spectrum
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Peptide identification 

PSM - Peptide Spectrum Match

Normally we keep only 
the top-scoring PSM for 

each spectrum 

Target
SeqDB

Spectrum Peptide Score

PSMs

Spectra
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Theoretical Spectrum of a peptide

100 200 300 400 500 600 700 800 9000

b:

y:

A

A
P
E
P
T
I
D

A
P
E
P
T
I

A
P
E
P
T

A
P
E
P

A
P
E

A
P

P
E
P
T
I
D
E

E
P
T
I
D
E

P
T
I
D
E

T
I
D
E

I
D
E

D
EE

m/z [Thomson]

A|P|E|P|T|I|D|E

24



Search engine

matched_peptide(s,D) = argmax f(s,T(p))
p∈D

Observed Spectrum

Database of peptides

Scoring Function

Theoretical spectrum of p
peptide

matched_peptide(s,D) = argmax f(s,p)
p∈D

SEQUEST:

other:
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Statistical inference procedure

Healthy population  
μH - mean feature 

Disease population 
μD - mean feature 

Healthy 
individuals 

yH - observed mean 

Disease  
individuals 

yD - observed mean

Random sample

Random sample

Statistical Model

properties of
yD - yH

Inference

conclusions 
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μD - μH



Hypothesis testing

• H0: The null hypothesis. The situation we 
are not interested in (typically μD-μH=0)  

• H1: The alternative hypothesis. The situation 
we want to detect (typically μD-μH≠0)



p value

• Pr(|yD-yH|≥z|μD-μH=0), i.e. the probability 
to a result at least as extreme as the one 
that was observed given H0.

• p values are uniformly distributed under H0.

f(yD-yH|μD-μH=0)

yD-yH
z-z



Statistical inference procedure

Healthy population  
μH - mean feature 

Disease population 
μD - mean feature 

Healthy 
individuals 

yH - observed mean 

Disease  
individuals 

yD - observed mean

Random sample

Random sample

Statistical Model

properties of
yD - yH

Inference

conclusions 
regarding
μD - μH



Multiple measurements per sampled individual

Healthy mice population  
 

μH=(μ1H,…,μnH)  
mean features

Disease population
 

μD=(μ1D,…,μnD)  
mean features 

Healthy 
individuals 

yH=(y1H,…,ynH) - observed mean 

Disease 
individuals 

yD=(y1D,…,ynD) - observed mean 

Random sample

Random sample

Statistical Model:
properties of

y1D-y1H,
…

ynD-ynH,

Inference:
conclusions 
regarding
μ1D-μ1H,

…
μnD-μnH,





False Discovery Rate
0.0001 alternative (H1)

0.00015 alternative (H1)

0.00017 alternative (H1)

0.0002 alternative (H1)

0.00022 null (H0)

0.00023 alternative (H1)

0.00034 alternative (H1)

0.00042 alternative (H1)

0.00046 null (H0)

0.00055 alternative (H1)

0.00065 null (H0)

0.00073 alternative (H1)

0.00084 null (H0)

... ...

threshold

typescore

FDR(x) is the expectation value of the fraction of tests below 
threshold x that are generated under the null hypothesis 
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Concept test: distribution of p values
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outcome from a well calibrated high throughput 
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Statistical significance for genomewide studies
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With the increase in genomewide experiments and the sequencing of
multiple genomes, the analysis of large data sets has become com-
monplace in biology. It is often the case that thousands of features in
a genomewide data set are tested against some null hypothesis,
where a number of features are expected to be significant. Here we
propose an approach to measuring statistical significance in these
genomewide studies based on the concept of the false discovery rate.
This approach offers a sensible balance between the number of true
and false positives that is automatically calibrated and easily inter-
preted. In doing so, a measure of statistical significance called the q
value is associated with each tested feature. The q value is similar to
the well known p value, except it is a measure of significance in terms
of the false discovery rate rather than the false positive rate. Our
approach avoids a flood of false positive results, while offering a
more liberal criterion than what has been used in genome scans for
linkage.

false discovery rates ! genomics ! multiple hypothesis testing ! q values

Some of the earliest genomewide studies involved testing for
linkage at loci spanning a large portion of the genome. Because

a separate statistical test is performed at each locus, traditional
p-value cutoffs of 0.01 or 0.05 had to be made stricter to avoid an
abundance of false positive results. The threshold for significance in
linkage analysis is usually chosen so that the probability of any single
false positive among all loci tested is !0.05. This strict criterion is
used mainly because one or very few loci are expected to show
linkage in any given study (1, 2). Because of the recent surge in
high-throughput technologies and genome projects, many more
types of genomewide studies are now underway. The analyses of
these data also involve performing statistical tests on thousands of
features in a genome. As opposed to the linkage case, it is expected
that many more than one or two of the tested features are
statistically significant. Guarding against any single false positive
occurring is often going to be much too strict and will lead to many
missed findings. The goal is therefore to identify as many significant
features in the genome as possible, while incurring a relatively low
proportion of false positives.

We are specifically concerned with situations in which a well
defined statistical hypothesis test is performed on each of thousands
of features represented in a genome. These ‘‘features’’ can be genes,
all nucleotide words of a certain length, single-nucleotide poly-
morphism markers, etc. Several motivating examples are given
below. For each feature, a null hypothesis is tested against an
alternative hypothesis. In this work, we say that a feature is truly null
if the null hypothesis is true, and a feature is truly alternative if the
alternative hypothesis is true. If a feature is called significant, then
the null hypothesis is rejected in favor of the alternative hypothesis.
The goal is to propose and estimate a measure of significance for
each feature that meets the practical goals of the genomewide study
and that is easily interpreted in terms of the simultaneous testing of
thousands of features.

We propose that the recently introduced q value (3, 4) is a well
suited measure of significance for this growing class of genomewide
tests of significance. The q value is an extension of a quantity called
the ‘‘false discovery rate’’ (FDR) (5), which has received much
recent attention in the statistics literature (6–11). A FDR method
has been used in detecting differential gene expression in DNA
microarray experiments (12), which can be shown to be equivalent

to the method in ref. 5 under certain assumptions. Also, ideas
similar to FDRs have appeared in the genetics literature (1, 13).

Similarly to the p value, the q value gives each feature its own
individual measure of significance. Whereas the p value is a
measure of significance in terms of the false positive rate, the q
value is a measure in terms of the FDR. The false positive rate and
FDR are often mistakenly equated, but their difference is actually
very important. Given a rule for calling features significant, the false
positive rate is the rate that truly null features are called significant.
The FDR is the rate that significant features are truly null. For
example, a false positive rate of 5% means that on average 5% of
the truly null features in the study will be called significant. A FDR
of 5% means that among all features called significant, 5% of these
are truly null on average.

The q value provides a measure of each feature’s significance,
automatically taking into account the fact that thousands are
simultaneously being tested. Suppose that features with q values
!5% are called significant in some genomewide test of significance.
This results in a FDR of 5% among the significant features. A
p-value threshold of 5% yields a false positive rate of 5% among all
null features in the data set. In light of the definition of the false
positive rate, a p-value cutoff says little about the content of the
features actually called significant. The q values directly provide a
meaningful measure among the features called significant. Because
significant features will likely undergo some subsequent biological
verification, a q-value threshold can be phrased in practical terms
as the proportion of significant features that turn out to be false
leads.

Here we show that the FDR is a sensible measure of the balance
between the number of true positives and false positives in many
genomewide studies. We motivate our proposed approach in the
context of several recent and prominent papers in which awkwardly
chosen p-value cutoffs were used in an attempt to achieve at least
qualitatively what the q value directly achieves. We also introduce
a fully automated method for estimating q values, with an initial
treatment of dependence issues between the features and guidelines
as to when the estimates are accurate. The proposed methodology
is applied to some gene expression data taken from cancer tumors
(14), supporting previously shown results and providing some
additional information.

Motivating Examples
Consider the following four recent articles in which thousands of
features from a genomewide data set were tested against a null
hypothesis. In each case, p-value thresholds were used to decide
which features to call significant, the ultimate goal being to identify
many truly alternative features without including too many false
positives.

Example 1: Detecting Differentially Expressed Genes. A common
goal in DNA microarray experiments is to detect genes that show
differential expression across two or more biological conditions
(15). In this scenario, the ‘‘features’’ are the genes, and they are
tested against the null hypothesis that there is no differential

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: FDR, false discovery rate; pFDR, positive FDR.
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gene expression. One of the goals of Hedenfalk et al. (14) was to
find genes that are differentially expressed between BRCA1- and
BRCA2-mutation-positive tumors by obtaining several micro-
arrays from each cell type. In their analysis they computed a
modified F statistic and used it to assign a p value to each gene.
A p-value cutoff of 0.001 was selected to find 51 genes of 3,226
that show differential gene expression. A rough calculation
shows that about three false positives are expected with this
cutoff. These authors later used a threshold of 0.0001 and
concluded that 9–11 genes are differentially expressed.

Example 2: Identifying Exonic Splicing Enhancers. Exonic splice en-
hancers are short oligonucleotide sequences that enhance pre-
mRNA splicing when present in exons (16). Fairbrother et al. (17)
analyzed human genomic DNA to predict exonic splice enhancers
based on the statistical analysis of exon–intron and splice-site
composition. They assessed the statistical significance of all 4,096
possible hexamers, the null hypothesis being a mathematical for-
mulation of a hexamer not being an exonic splice enhancer. A
statistic is formed based on the location of the hexamers in 4,817
human genes where the exon–intron structure has been well
characterized. The end product is a p value associated with each of
the 4,096 hexamers. A p-value cutoff of 10!4 was used based on the
rationale that, at most, 4,096 " 10!4 # 1 false positive is expected
under this criterion. This cutoff yields 238 significant hexamers, a
number of which were subsequently biologically verified.

Example 3: Genetic Dissection of Transcriptional Regulation. Global
monitoring of gene expression and large-scale genotyping were
recently used to study transcriptional regulation in yeast. Brem et al.
(18) crossed two strains of yeast, where many genes appeared to be
expressed differentially between these two strains. For 40 of the
resulting haploid progeny, the expression levels of 6,215 genes were
measured by using microarrays. Linkage was tested between 3,312
markers spanning the genome and each of these 6,215 ‘‘quantitative
traits.’’ A statistically significant linkage between a gene’s expres-
sion level and a marker indicates that a regulator for that gene is
located in the region of the marker. In analyzing these data, one can
perform a statistical test for each gene-marker combination, re-
sulting in millions of p values, or one can test each gene for showing
linkage to at least one locus, resulting in 6,215 p values. Taking the
latter approach and using a p-value cutoff of 8.5 " 10!3, Brem et
al. reported that 507 genes show linkage to at least one locus, where
53 are expected by chance. A cutoff of 1.6 " 10!4 yields 205 genes
showing linkage to at least one locus, where 1 is expected by chance.
The p values are calculated according to a permutation scheme to
capture the dependence between adjacent markers (19). The
above-mentioned cutoffs correspond to respective thresholds of 5 "
10!5 and 2 " 10!6 when testing every gene–marker combination.
Several other p-value cutoffs with similar pieces of information are
given throughout ref. 18.

Example 4: Finding Binding Sites of Transcriptional Regulators. Tran-
scriptional regulatory proteins bind to specific promoter sequences
to participate in the regulation of gene expression. The availability
of complete genome sequences and the development of a method
for genomewide binding analysis has allowed the characterization
of genomic sites bound by specific transcriptional regulators. Lee et
al. (20) used genomewide location analysis to investigate how yeast
transcriptional regulators bind to promoter sequences across the
genome. Specifically, binding of 106 transcriptional factors was
measured across the genome. At each genomic location, a p value
was calculated under the null hypothesis that no binding occurs,
resulting in the consideration of thousands of p values. Lee et al.
‘‘generally describe results obtained at a p-value threshold of 0.001
because [their] analysis indicates that this threshold maximizes
inclusion of legitimate regulator–DNA interactions and minimizes

false positives.’’ They estimate that among the 3,985 interactions
found to be significant at this threshold, $6–10% are false positives.

Reasonable p-value thresholds were sought in each of the four
examples. Three of them used four or more cutoffs in an attempt
to circumvent the inherent difficulty in interpreting a p-value
threshold in a genomewide study. The significance of the results is
consequently obfuscated by the multiple cutoffs that are applied to
the p values. Two pieces of information make such analyses more
straightforward and universally interpretable. The first is an esti-
mate of the overall proportion of features that are truly alternative,
even if these cannot be precisely identified. For example, what
proportion of the 3,226 genes in example 1 are differentially
expressed? The second is a measure of significance that can be
associated with each feature so that thresholding these numbers at
a particular value has an easy interpretation. We provide both of
these in our proposed approach.

Note that, in example 1, one could just as well work with the
modified F statistic and threshold it directly. Directly thresholding
the F statistic is equivalent to thresholding the p values described
above. The proposed methodology described in terms of the
original statistics can be intuitively pleasing for certain cases,
proving that p values are not a necessary intermediate step.
However, in other cases, such as examples 2 and 3, the test statistics
and null distributions are much more complicated, and p values
provide a convenient numerical measure of the strength of evidence
against the null for each feature. For this reason, we describe our
proposal in terms in p values rather than test statistics. It is also
preferable to present the q-value estimates in terms of p values to
make the method widely applicable. However, working with the
original test statistics and null distributions will lead to the same
q-value estimates (3).

Proposed Method and Results
The dilemma of how to consider, say, m p values is seen more clearly
by considering the various outcomes that occur when a significance
threshold is applied to them. Table 1 lists these outcomes: specif-
ically, F is the number of false positives, T is the number of true
positives, and S is the total number of features called significant.
Also, m0 is the number of truly null features in the study, and
m1 % m ! m0 is the number of truly alternative features. These
quantities can be used to form an overall error measure for any
given p-value cutoff. Regardless of whether the p-value threshold is
fixed or data-dependent, the quantities F, T, and S are random
variables. Therefore, it is common statistical practice to write the
overall error measure in terms of an expected value, which we
denote by E[!].

If the false positive rate is the error measure used, then a simple
p-value threshold is used. A p-value threshold of 0.05, for example,
guarantees only that the expected number of false positives is
E[F] ! 0.05 m. This number is much too large for all of the examples
we have considered, and the false positive rate is too liberal. The
error measure that is typically controlled in genome scans for
linkage is the familywise error rate, which can be written as Pr(F "
1). [Note that we can guarantee that Pr(F " 1) ! # by calling all
features significant with p values ! #!m, which is the well known
Bonferroni correction.] Controlling Pr(F " 1) is practical when very
few features are expected to be truly alternative (e.g., in the linkage
case), because any false positive can lead to a large waste of time.
However, the familywise error rate is much too conservative for

Table 1. Possible outcomes from thresholding m features
for significance

Called significant Called not significant Total

Null true F m0 ! F m0

Alternative true T m1 ! T m1

Total S m ! S m
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many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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idéa [Benjamini and Hochberg 1995] - control for:

many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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We got m p values,  
 
for a threshold t we may say that:

many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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Illustration of FDR

BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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π0 is the prior probability that a statistic is 

derived under H0 i.e. Pr(H=H0)
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BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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π0 estimation

many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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CTGF gene (clone 38393) is the 159th most significant gene for
differential expression (q value ! 0.049; p value ! 0.0036) and is
overexpressed in BRCA2-mutation-positive tumors. Activity of this
gene is associated with suppressing apoptosis (23), which further
supports earlier claims (14). Therefore, our results support the
previous observation that many genes are overexpressed in BRCA1-
mutation-positive tumors, particularly genes involved in DNA
repair and apoptosis. A full list of genes with their q values, p
values, and fold change is available at http:!!genomine.org!qvalue!
results.html.

A common mistake is to state that the p value is the probability
a feature is a false positive. We stress that the q value is also not the
probability that the feature is a false positive. In the example
presented above MSH2 has a q value equal to 0.013. This value does
not imply that MSH2 is a false positive with probability 0.013.
Rather, 0.013 is the expected proportion of false positives incurred
if we call MSH2 significant. Because the q-value measure includes
genes that are possibly much more significant than MSH2, the
probability that MSH2 is itself a false positive may be substantially
higher. In terms of the FDR approach, this probability can also be
thought of as a ‘‘local FDR’’ (3, 8, 24, 25). Statistical significance
involves deciding between null and alternative hypotheses. When
assigning multiple measures of statistical significance, it is necessary
to account for the fact that decisions are made for m features
simultaneously. The q value accomplishes this by conditioning
based on the fact that every feature as or more extreme will also be
called significant: the probability a feature is a false positive does
not. However, the latter quantity clearly provides very useful
information, and ideally one would have both estimates available
for the analysis of a genomewide study.

Discussion
We have proposed the q value as an FDR-based measure of
significance for genomewide studies. The methodology we have
proposed is the only methodology theoretically shown to be con-
servative (over all q values) in situations plausibly encountered in
genomics. (See Remark D in Appendix and ref. 10.) The proposed
methodology is easy to implement and interpret, and it is fully
automated. The original FDR methodology (5) is too conservative
for genomics applications because it assumes !0 ! 1. For example,
controlling the FDR at 0.03, 0.05, or 0.07 in the expression data (14)
finds 80, 160, or 231 significant genes, respectively, when our
proposed method is used. The methodology in ref. 5 finds only 21,
88, or 153, respectively, indicating that this earlier method’s esti-
mates are too conservative and result in a substantial loss of power.
The approach in ref. 5 also forces one to choose a single acceptable
FDR level before any data are seen, which is often going to be
impractical and too restrictive.

The q value of a particular feature in a genomewide data set is
the expected proportion of false positives incurred when calling that
feature significant. One may use the q values as an exploratory
guide for which features to investigate further. One may also take
all features with q values " some threshold # to attain a FDR " #.
Most importantly, a systematic use of q values in genomewide tests
of significance will yield a clear balance of false positives to true
positive results and give a standard measure of significance that can
be universally interpreted. The methodology we presented also
provides an estimated !̂0 of the proportion of features following the
null hypothesis. The quantity !̂1 ! 1 " !̂0 estimates a lower bound
on the proportion of truly alternative features. For example, among
the 3,170 genes we examined from ref. 14, we found that at least
33% are differentially expressed between BRCA1- and BRCA2-
mutation-positive tumors. Similar estimates from the other exam-
ples we considered would be interesting to compute.

The software QVALUE can be downloaded at http:!!genomine.
org!qvalue!. This program takes a list of p values and computes
their estimated q values and !̂0. A version of Fig. 2 is also generated.

Appendix
Remark A: FDR, Positive FDR (pFDR), and the q Value. In this article,
we have used FDR and FDR ! E[F!S] somewhat loosely. It will
almost always be the case that S ! 0 with positive probability, which
implies that E[F!S] is undefined. The quantity E[F!S"S # 0]!Pr(S #
0) was proposed as a solution to this problem (5), which is the result
of setting F!S ! 0 whenever S ! 0 in the original E[F!S]. This
quantity is technically called the FDR in the statistics literature. In
our case we want to place a measure of significance on each feature,
which is done under the assumption that the feature is called
significant. Thus, the inclusion of Pr(S # 0) is somewhat awkward.
An alternative quantity, called the pFDR, was recently proposed
(23), which is simply defined as pFDR ! E[F!S"S # 0]. The q value
is most technically defined as the minimum pFDR at which the
feature can be called significant (24). Because m is large in
genomewide studies, we have that Pr(S # 0) $ 1 and FDR $
pFDR $ E[F]!E[S], so the distinction is not crucial here. Also, the
estimate we use is easily motivated for either quantity (4, 10).

Suppose that each feature’s statistic probabilistically follows a
random mixture of a null distribution and an alternative distri-
bution. Then under a fixed significance rule, the pFDR can be
written as Pr(feature i is truly null"feature i is significant), for any
i ! 1, . . . , m (3). Similarly, the false positive rate can be written
as Pr(feature i is significant"feature i is truly null), for any i !
1, 2, . . . , m. Notice the similarity between the pFDR and false
positive rate: the arguments have simply been swapped in the
conditional probabilities. This connection is the motivation for
calling our proposed quantity q value. Indeed, the p value of a
feature is technically defined to be the minimum possible false
positive rate when calling that feature significant (26). Likewise,
the q value is based on the minimum possible pFDR.

Remark B: General Algorithm for Estimating q Values. There is a
tradeoff between bias and variance in choosing the $ to use in !̂0($).
For well formed p values, it should be the case that the bias of !̂0($)
decreases with increasing $, the bias being the smallest when $3
1 (4). Therefore, the method we use here is to estimate
lim$31!̂0($) % !̂0($ ! 1). In doing so, we will borrow strength
across the !̂0($) over a range of $, giving an implicit balance
between bias and variance.

Consider Fig. 3, where we have plotted !̂0($) versus $ for $ ! 0,
0.01, 0.02, . . . , 0.95. By fitting a natural cubic spline to these data
(solid line), we have estimated the overall trend of !̂0($) as $
increases. We purposely set the degrees of freedom of the natural
cubic spline to 3; this means we limit its curvature to be like a

Fig. 3. The !̂0($) versus $ for the data of Hedenfalk et al. (14). The solid line
is a natural cubic spline fit to these points to estimate !̂0($ ! 1).
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many of the genomewide studies currently being performed, in-
cluding the four examples we considered where many features are
expected to be truly alternative.

It is therefore useful to find an error measure in between these,
specifically, one that provides a sensible balance between the
number of false positive features, F, and the number of true positive
features, T. This balance can be achieved efficiently by considering
the ratio

no. false positive features
no. significant features !

F
F " T !

F
S,

which can be stated in words as the proportion of false positive
features among all of those called significant. We are particularly
interested in the FDR, which is defined to be the expected value of
this quantity:

FDR ! E! F
F " T" ! E!F

S".

To be completely rigorous, there is the possibility that S ! 0, in
which case F#S is undefined, so some adjustment has to be made
to this definition (see Remark A in Appendix). The FDR can also be
written in terms of the well known specificity, (m0 " F)#m0, and
sensitivity, T#m1:

FDR ! E! m0!#1 # specificity$

m0!#1 # specificity$ " m1!sensitivity".

Clearly, the FDR is a useful measure of the overall accuracy of a
set of significant features for the examples we described and many
other genomewide studies. But one would also like a measure of
significance that can be attached to each individual feature. The q
value is a measure designed to reflect this level of attachment.

Suppose that we list the features in order of their evidence against
the null hypothesis. It is practical to arrange the features in this way
because calling one feature significant means that any other feature
with more evidence against the null should also be called significant.
Hence, we list the features from smallest to largest p value. If a
threshold value is chosen, we call all features significant up through
that threshold.

The q value for a particular feature is the expected proportion of
false positives incurred when calling that feature significant. There-
fore, calculating the q values for each feature and thresholding them
at q-value level $ produces a set of significant features so that a
proportion of $ is expected to be false positives. Typically, the p
value is described as the probability of a null feature being as or
more extreme than the observed one. ‘‘As or more extreme’’ in this
setup means that it would appear higher on the list. The q value of
a particular feature can be described as the expected proportion of
false positives among all features as or more extreme than the
observed one. The q value has a special probabilistic relationship to
the p value (yielding the origin of its name) that is briefly explained
in Remark A in Appendix.

As a concrete example, we considered the data from ref. 14 to
identify genes that are differentially expressed between BRCA1-
and BRCA2-mutation-positive tumors. Using a two-sample t sta-
tistic, we calculated a p value for each of 3,170 genes under the null
hypothesis of no differential gene expression. See Remark C in
Appendix for specific details. Fig. 1 shows a density histogram of the
3,170 p values. The dashed line is the density we would expect if all
genes were null (not differentially expressed), so it can be seen that
many genes are differentially expressed.

Given the definition of the q value, it makes sense to begin by
estimating the FDR when calling all features significant whose p
value is less than or equal to some threshold t, where 0 % t % 1.
Denote the m p values by p1, p2, . . . , pm, and let

F&t' ! # (null pi % t; i ! 1, . . . , m) and

S&t' ! # (pi % t; i ! 1, . . . , m).

We then want to estimate

FDR&t' ! E!F&t'
S&t'".

Because we are considering many features (i.e., m is very large), it
can be shown that

FDR&t' ! E!F&t'
S&t'" $

E#F&t'$
E#S&t'$. [1]

A simple estimate of E[S(t)] is the observed S(t); that is, the number
of observed p values % t. In estimating E[F(t)], recall that p values
corresponding to truly null hypotheses should be uniformly distrib-
uted. [If the null p values are not uniformly distributed, then one
wants to err in the direction of overestimating p values (i.e,
underestimating significance). Correctly calculated p values are an
important assumption underlying our methodology. See also Re-
mark D in Appendix.] Thus, the probability a null p value is %t is
simply t, and it follows from Table 1 that E[F(t)] ! m0 ! t. Because
the total number of truly null features m0 is unknown it has to be
estimated. Equivalently, one can estimate the (more interpretable)
proportion of features that are truly null, which we denote by &0 *
m0#m.

It is difficult to estimate &0 without specifying the distribution of
the truly alternative p values. However, exploiting the fact that null
p values are uniformly distributed, a reasonable estimate can be
formed. From Fig. 1 we can see that the histogram density of p
values beyond 0.5 looks fairly flat, which indicates that there are
mostly null p values in this region. The height of this flat portion
actually gives a conservative estimate of the overall proportion of
null p values. This can be quantified with

&̂0&'' !
# (pi ( '; i ! 1, . . . , m)

m&1 # ''
,

which involves the tuning parameter '. Setting ' ! 0.5, we estimate
that 67% of the genes in the data from ref. 14 are not differentially
expressed. Note that through significance tests, prediction models,
and various other techniques, it has been qualitatively argued that

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.
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q value

BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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To assign relevant measures to individual identifications and 
to ensure a monotonically increasing function with the 

threshold, the q value is defined as
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FDRs from empirical null models

• If we have an empirical null model, i.e. a mechanism z(y) that models readouts 
under the null model a p value can be estimated as p(t)=#{z(yi)≥t}/(m+1)  

• An example: Typically compare difference of trait between sample groups with the 

ones within a sample group : If yH=(yH1, yH2) and yD=(yD1, yD2) assign significance 
of  Z=(yH1 - yD1 + yH2- yD2) by comparing agains the null model  
z=(yH1- yH2 + yD1- yD2)

FDR(t)=
π0 m#{zi≥t}/(m+1)

#{Zi≥t}
≈
π0 #{zi≥t}

#{Zi≥t}

BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by

FDR̂$t% #
!̂0m!t
S$t% #

!̂0m!t
# &pi $ t' .

The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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BRCA1- and BRCA2-mutation-positive tumors can be distin-
guished by their genetic profiles (14). Our estimate of 67% provides
a direct measurement of this; we estimate that at least 33% of the
examined genes are differentially expressed between these two
tumor types. Using traditional p-value cutoffs, Hedenfalk et al. (14)
were comfortable only with concluding that 9–11 genes are differ-
entially expressed of !3,000.

The rationale behind the estimate of !0 is that p values of truly
alternative features will tend to be close to zero, whereas p values
of null features will be uniformly distributed among [0, 1]. ‘‘Most’’
of the p values we observe near 1 will be null then. If we were able
to count only null p values, then #{null pi ! "}!m(1 " ") would
be an unbiased estimate of !0. The inclusion of a few alternative p
values only makes this estimate conservative. If we take " # 0, then
!̂0(") # 1, which is usually going to be much too conservative in
genomewide data sets, where a sizable proportion of features are
expected to be truly alternative. However, as we set " closer to 1,
the variance of !̂0(") increases, making the estimated q values more
unreliable. By examining the data in Fig. 1, a common sense choice
for " was " # 0.5. In general, it is useful to automate this choice.
We introduce a fully automated method in Remark B in Appendix
for estimating !0 that borrows strength across a range of !̂0("). This
automated method also happens to result in !̂0 # 0.67.

By plugging these quantities into the right side of Eq. 1, FDR(t)
is estimated by
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The more mathematical definition of the q value is the minimum
FDR that can be attained when calling that feature significant (see
Remark A in Appendix). Thus, the q value of feature i is mint%pi

FDR(t), where we have simply considered all thresholds t % pi. We

can estimate the q value of feature i by simply plugging FDR̂(t) into
the definition above:

q̂$pi% # min
t%pi

FDR̂$t%.

Note that this guarantees that the estimated q values are increasing
in the same order as the p values. This method is presented in an
easily implemented and fully automated algorithm in Remark B in
Appendix.

We mention two mathematical results concerning the accuracy
of the estimated q values that hold for large m under what we call
‘‘weak dependence’’ of the p values (or features). Weak dependence
can loosely be described as any form of dependence whose effect
becomes negligible as the number of features increases to infinity.
(See Remark D in Appendix and ref. 10.) The first result is that if we
call all features significant with q values $ &, then for large m the
FDR will be $ &. The second result is that the estimated q values
are simultaneously conservative for the true q values. This means
that the estimated q value of each feature is greater than or equal
to its true q value, across all features at once. Under this result, one
can consider each feature’s significance simultaneously without
worrying about inducing bias. In a sense, the second result implies
that one can consider all & cutoffs simultaneously, which is a much
stronger generalization of the first result. These conservative prop-
erties are desirable because one does not want to underestimate the
true q values or the true proportion of false positives. We hypoth-
esize that the most likely form of dependence between features in
a genomewide data set will meet the weak dependence require-
ment, although this has to be considered for each application.
Specifically for DNA microarray data, we argue that because genes
behave dependently in small groups (i.e., pathways), with each
group essentially being independent of the others, then the depen-
dence can be modeled in blocks in such a way to satisfy the
mathematical conditions. More specific details of these mathemat-
ical results can be found in Remark D in Appendix.

Given this potentially valuable theoretical justification for con-
sidering all q values simultaneously, even in the presence of weak
dependence, it is possible to use several plots to calibrate the q-value
cutoff one would want to apply in a study. (On the other hand, a
single cutoff is not always necessary; each feature’s estimated q
value could simply be reported.) Fig. 2a shows a plot of the q values
versus their t statistics from the data in ref. 14. Fig. 2b is a plot of
the q values versus their p values. One can see the expected
proportion of false positives for different p-value cutoffs from this
plot. Fig. 2c shows the number of significant genes for each q value.
Notice that for estimated q values slightly greater than 0.02, a sharp
increase occurs in the number of significant genes over a small
increase in q value. This allows one to easily see that a slightly larger
q-value cutoff results in many more significant genes. Finally, Fig.
2d shows the expected number of false positives as a function of the
number of genes called significant. In general, these last three plots
can be used concurrently to give the researcher a comprehensive
view of what features to examine further.

In our analysis, thresholding genes with q values $0.05 yields 160
genes significant for differential expression. This means that (8 of
the 160 genes called significant are expected to be false positives. It
has previously been noticed that a large block of genes are over-
expressed in BRCA1-mutation-positive tumors, in particular, genes
involved in DNA repair and apoptosis (14). We find that 117 of the
160 called significant at q-value level 0.05 are overexpressed in
BRCA1-mutation-positive tumors, quantitatively supporting their
claim. The 0.05 q-value cutoff is arbitrary, and we do not recom-
mend that this value necessarily be used. Considering particular
genes allows us to examine their individual q values. For example,
the MSH2 gene (clone 32790) is the eighth most significant gene for
differential expression with a q value of 0.013 and a p value of 5.05 )
10"5. This gene is overexpressed in the BRCA1-mutation-positive
tumors, indicating increased levels of DNA repair (21).

MSH2’s p value of 5.05 ) 10"5 says that the probability a null
(nondifferentially expressed) gene would be as or more extreme
than MSH2 is 5.05 ) 10"5. But MSH2’s statistic could also be
unlikely for a differentially expressed gene. The q value allows a
quantification of this; the estimated q value for MSH2 is 0.013,
meaning that (0.013 of the genes that are as or more extreme than
MSH2 are false positives. The PDCD5 gene (clone 502369) is the
47th most significant gene, with a q value of 0.022 and p value of
4.79 ) 10"4. This gene, associated with inducing apoptosis (15), is
also overexpressed in BRCA1-mutation-positive tumors. The

Fig. 2. Results from the Hedenfalk et al. (14) data. (a) The q values of the
genes versus their respective t statistics. (b) The q values versus their respective
p values. (c) The number of genes occurring on the list up through each q value
versus the respective q value. (d) The expected number of false positive genes
versus the total number of significant genes given by the q values.
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Posterior Error Probability 
a.k.a. local FDR
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PEP(t)=
π0f0(t)

f(t)
=

π0f0(t)

π0f0(t)+ π1f1(t)

π0f0(t)

PEP(t) is the probability that an identification  
scoring t is incorrect

H1

H0



Some popular confidence metrics

• False Discovery Rate - FDR(x) is the expectation 
value of the fraction of identifications with score 
above threshold x that are incorrect

• q value - q(x) is the minimal FDR(x’) out of all 
thresholds x’ that includes x

• Posterior Error Probability - PEP(x) is the 
probability that an identification with score x is 
incorrect

• p value - p(x) is the probability that an incorrect 
identification gets a score higher than or as high 
as x
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Outline

1.What is proteomics?

2.Background on Mass spectrometry

3.Peptide identification in shotgun proteomics

4.Multiple hypothesis corrections

5.The statistics of shotgun proteomics

6.Some open problems
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Peptide identification 

PSM - Peptide Spectrum Match

Normally we keep only 
the top-scoring PSM for 

each spectrum 

Target
SeqDB

Spectrum Peptide Score

PSMs

Spectra
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We can use target-decoy analysis to 
calculate q values 

[Moore et al. JASMS 2002]
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Score

Fr
eq
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nc

y FDR=
A
B

AB

decoy PSMs target PSMs

B’

=
A

π0·B’

Using decoy PSMs to 
estimate false discovery rate 

π0 is the prior probability that a target PSM is incorrectly matched

[Käll et al. JPR 2008]

q(xt)=inf{FDR(x)}
x≤xt

xt

Pr(x≥xt, H=0)

Pr(x≥xt)
FDR(xt)=
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Known Sample

“Standard mixture” of small number of 
proteins

known proteins
“Standard Mixture”

some other protein sequences 
“Entrapment Sequences”

Target
SeqDB

Spectrum Peptide Score

PSMs

Spectra



Calibration: Quantile-quantile plots

50
[Granholm et al. JPR 2011]



Conservative (black) and anti-conservative (red) scores

51 [Granholm et al. JPR 2011]



Percolator

Percolator combines different PSM 
features in an optimal manner

combined
score

Target
SeqDB

Spectrum Peptide Score

PSMs

Spectra

peptide trypticity

peptide length

XCorr

Sp

deltCn

[Käll et al. Nature Meth 2007]
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Machine learning 
strategies

Set of Target PSMs contain mostly null PSMs.

Possible workarounds:

1.Curate a set of known correct PSMs 
Anderson et al. (2003), Keller et al. (2002) [PeptideProphet] 

2.Better algorithms:

-Semi-supervised learning



Self-training
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Percolator algorithm

Decoy
PSM

Features

Normal
PSM

Features

Sc
or

ed
 PS

Ms Best scoring PSM
s

FDR
Filter

SVM
TrainerClassifier

Initial scoring
function

Scoring function

Target

[Käll et al. Nature Meth 2007]



PSM features
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peptide sequence features

precursor mass features

charge[Käll et al. Nature Meth 2007]



Percolator greatly increase the yield from  
Sequest matching results
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PSM/Peptide/Protein 
level statistics

Spectrum 1

Spectrum 2

Spectrum 3

Spectrum 4

Spectrum 5

Peptide 1

Peptide 2

Peptide 3

Protein 1

Protein 2
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Clustering of Fragment Spectra
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Proteotypic peptide prediction

• Some peptides are more prone to be 
detected than other peptides. We may 
predict such “proteotypic” peptides using 
classical machine learning.   

Two measures to quantify the strength of each property’s differ-
entiation power were assessed: the Kullbach-Leibler (KL) distance and
the Kolmogorov-Smirnov (KS) distance. Figure 2b shows KS curves
for the properties discovered as best distinguishing proteotypic pep-
tides from unobserved peptides for the PAGE- matrix-assisted laser
desorption ionization (MALDI) data set as well as an example for a
nondiscriminating property. In addition, we randomly permuted the
properties to compute the likelihood of achieving each KS-distance at
random (P values uniformly o 1e-5).
Having discovered the most discriminating physicochemical prop-

erties for each experimental platform, we applied these predictors to
score the proteotypic propensity of each protein’s theoretical tryptic
peptides. Each protein’s tryptic peptides were converted into a
property vector, using only those properties found previously to be
discriminating for the analytical platform under investigation. Using
our training set of proteotypic peptides and unobserved peptides, we
estimated a Gaussian mixture likelihood function to score the like-
lihood for a peptide to be proteotypic. We applied this scoring
function to property vectors for peptides that had been excluded
from training to derive receiver operator characteristics (ROC) curves
(Fig. 3a), cumulative accuracy figures and AUCs (Table 1). As the
number of nonproteotypic peptides exceeds the number of proteo-
typic peptides by several orders of magnitude, we used the positive-

predictive value {true positives/(true positives + false positives)},
instead of the false-positive rate {false positives/(true negatives +
false positives)}, because it allows a more accurate assessment of the
impact of false positives in our calculation (see Supplementary
Discussion online for a detailed explanation). Each of the classifiers
was able to discriminate the vast majority of proteotypic peptides
from nonproteotypic peptides with a cumulative accuracy nearing
90%. The predictors do not appear to be overtrained as the prediction
accuracies with the training and testing sets are nearly identical
(Fig. 3b). However, application of each predictor to other proteotypic
peptide sets (e.g., the MALDI-PAGE predictor to the three electrospray
ionization (ESI) peptide sets) substantially reduced prediction perfor-
mance (Fig. 3c). We expect that the exponential growth of proteomics
data repositories will enable the further refinement of predictors and
enable development of predictors for experimental designs not cov-
ered in this study.
To test the generality of the predictors developed on the yeast data

sets, we applied and compared them to a human PAGE-ESI data set
comprising 500 repeatedly identified proteins and 19,732 peptides
generated by the same experimental protocol used for the yeast
training data. Predictions were validated by computing the coverage
and specificity of the predictions on the human data. The application
of the yeast PAGE-ESI proteotypic peptide predictor to a human
PAGE-ESI data set resulted in no performance degradation for
proteins as distant in phylogeny as yeast and humans (the ROC curves
show a chi-squared similarity P o 0.001 for high-confidence predic-
tions between yeast and human proteomes) (Figure 3d). This indi-
cates that the predictors are not overtrained and that amino acid usage
in proteins between yeast and human is not radically different. For
example, there is good agreement between empiric and predicted
proteotypic peptides even for difficult-to-analyze proteins such as
human g-secretase, a transmembrane multiprotein complex that is
associated with the development of amyloid plaques in brains of
Alzheimer patients20 (Supplementary Table 8 online). Most of the
frequently observed peptides were also predicted to be proteotypic.
Also note that the number of proteotypic peptides for a given protein
is not merely a function of protein length. Although large proteins
tend to have more proteotypic peptides, factors such as amino acid
composition and the presence of transmembrane domains can be of
significant influence.
We next applied our predictor to the entire yeast and human

genomes to determine the distribution of proteotypic peptides per
protein. Each method identified at least one high-confidence (499%)
proteotypic peptide for 460% of yeast proteins (62% of human
proteins). For yeast, we predict two high-confidence proteotypic
peptides on average per protein and experimental design (Supple-
mentary Figure 2 online). By allowing lower, but still reasonable
confidence thresholds (P 4 0.9, 430! better than choosing at
random), our PAGE-MALDI predictor is able to identify a proteotypic
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a Figure 2 Peptide description by a numerical matrix of physicochemical
properties identifies properties that discriminate between proteotypic and
unobserved peptides. (a) Tryptic peptide sequences are described by
summed and averaged numerical values of a total of 494 amino
acid–associated physicochemical property scales. (b) Kolmogorov-Smirnov
distributions for proteotypic peptides (broken lines) and unobserved peptides
(solid lines) derived from the PAGE-MALDI data set highlight peptide
properties that allow proteotypic peptides to be distinguished from
unobserved peptides. Dissimilar distributions (e.g., average positive charge)
imply that this property can discriminate between proteotypic peptides and
unobserved peptides. Indistinguishable distributions (here, average max
side-chain width) imply no such discrimination ability.
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Spectral Alignment

[Bandeira et al. PNAS 2007]

We further combine spectral pairs into a spectral network in which
each vertex corresponds to a spectrum and each edge to a spectral
pair. Fig. 1 shows a spectral network of 945 MS/MS spectra
[corresponding to different peptides from a nuclear factor !B
kinase " subunit (IKK") protein sample], illustrating the key
advantage of spectral networks over the traditional MS/MS data-
base search. Traditional approaches to peptide identification con-
sider each of these spectra separately without attempting to cor-
relate different spectra from related peptides. As a result, the
important insights that can be derived from the structure of the
spectral network are lost. Our approach consolidates all of these
spectra into 117 clusters (vertices of the network) and reveals
many spectral pairs (edges of the network). This results in the
analysis of all spectra at once and thus increases the confidence of
peptide identifications, reinforces predictions of modifications by
using correlated spectra, and eliminates the need to ‘‘guess’’ mod-
ifications in advance. Moreover, the spectral network even allows
one to assemble these spectra into an intact 34-aa segment of
the IKK" protein, thus opening the door for shotgun protein
sequencing (20).

Results
Interpretation of Spectral Pairs/Stars. The set of all spectra pairing
with a spectrum S in the spectral network is called a spectral star. For
example, the spectral star for the spectrum derived from peptide 3
in Fig. 1 consists of multiple spectra from five different peptides.
The high quality of the virtual star spectra derived from spectral
pairs and spectral stars makes de novo interpretation of these
spectra straightforward [see supporting information (SI) Fig. 4 and
SI Table 2]. Because star spectra feature excellent separation of b-
and y-ion ladders and only a small number of noise peaks, de novo
reconstructions of these spectra produce reliable (gapped) se-
quences that usually contain long correct tags.¶ On average, de novo
reconstructions of our star spectra correctly identify 72% of all
possible ‘‘cuts’’ in a peptide [i.e., on average, 0.72 ! (n " 1) b ions
(or y ions) in a peptide of length n are identified]. This is a very high
number, inasmuch as the first (e.g., b1) and last (e.g., bn"1) b ions
are rarely present in the MS/MS spectra, which makes it nearly
impossible to explain #80% of all cuts in the IKK" sample.
Moreover, on average, unexplained peaks account for only 5% of
the total score of the de novo reconstruction.

Benchmarking in MS is inherently difficult because of a shortage

of manually validated large MS/MS samples that represent ‘‘gold
standards.’’ Although the ISB data set (21) represents such a gold
standard for unmodified peptides, large validated samples of spec-
tra from modified peptides are not currently available. As a
compromise, we benchmarked our algorithm by using a set of
11,760 spectra from the IKK" data set that were annotated using
InsPecT and extensively studied in recent publications (4, 7),
including comparisons with SEQUEST, Mascot, and X!Tandem.
Our entire spectral networks analysis (starting from clustering and
ending with interpretations) of this IKK" data set took 9 min on a
regular desktop computer (Intel Pentium 4; 2.8-GHz clock speed).
We compared our performance to that obtained with InsPecT,
which was previously shown to be 2 orders of magnitude faster than
SEQUEST for restricted database search (4). Even when searching
against a moderately sized database, such as Swiss-Prot’s set of
13,749 human proteins, InsPecT’s running time was 55 min (com-
plete running-time results are given in SI Appendix A). Thus, our
spectral networks approach (which finds both unmodified and
modified peptides) is six times faster than InsPecT (in the mode that
searches for unmodified peptides only). Below we give identifica-
tion results for both spectral pairs and spectral stars.

InsPecT identified 515 unmodified peptides in the IKK" sample,
413 of which have some other prefix/suffix or modified variant in the
sample and are thus amenable to pairing. We were able to find
spectral pairs for 386 of these 413 peptides. Moreover, 339 of these
386 peptides had spectral pairs coming from two (or more) different
peptides, i.e., pairs (S1, S2) and (S1, S3) such that spectra S2 and S3
come from different peptides.

The average number of (gapped) de novo reconstructions (ex-
plaining at least 85% of the optimal score) for star spectra was 10.4.
Although star spectra generate a small number of gapped recon-
structions, these gapped sequences are not well suited for fast
membership queries in the database. We therefore transform every
gapped de novo reconstruction into an ungapped reconstruction by
substituting every gap with all possible combinations of amino acids.
On average, this approach results in 165 sequences of length 9.5 aa
per spectrum; for 86% of all peptides, one of these tags is correct.

Although checking the membership queries for 165 sequences
can be done very quickly with database indexing (at most, one of
these sequences is expected to be present in the database), there is
no particular advantage in using such superlong tags (9.5 aa on
average) for standard database search: a tag of length 6–7 aa will
also typically have a unique hit in the database. However, the long
9–10-aa tags have distinct advantages in difficult nonstandard
database searches, e.g., discovery of new alternatively spliced
variants via MS/MS analysis. Moreover, for standard search, one
can generate a smaller set of shorter (6–7-aa) tags based on the

¶In contrast to the standard de novo algorithms, we do not insist on reconstructing the
entire peptide and often shorten the found path by removing its prefix/suffix if the path
does not explain any peaks. As a result, the found path does not necessarily start/end at
the beginning/end of the peptide.

1  KQGGTLDD  LEE  QAREL
2  KQGGTLDD  LEE  QARE
3  KQGGTLDD  LEE  QAR
4  KQGGTLDD  LEE  QA
5  KQGGTLDD  LEE-18QAR
6  KQGGTLDD  LEE-18Q
7   QGGTLDD  LEE  QAR
8   QGGTLDD-53LEE  QAR

1

2

3

457

8 6

Fig. 1. Spectral network constructed by aligning spectra from overlapping peptides. (Left) Spectral network for 945 spectra representing different peptides
from the fragment IVDLQRSPMGRKQGGTLDDLEEQARELYRRLREK of the human IKK" protein. The spectral network is constructed without any knowledge of
the peptide annotations. Each of 117 vertices in the spectral network corresponds either to a single MS/MS spectrum or to a consensus spectrum of multiple MS/MS
spectra from the same peptide (derived by clustering). Two vertices are connected by an edge whenever the corresponding spectra form a spectral pair. (Center)
A subnetwork of the entire spectral network spanning the fragment KQGGTLDDLEEQAREL (shown by red vertices Left). (Right) Paired peptides found by
analyzing the Center spectral subnetwork with our paired spectra detection procedure.
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Predicting properties of peptides

[Afkham et al. manuscript]
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Search space of tryptic 
peptides from six frame 

translation of the 
human genome

(2·108 peptides)

Search space of tryptic peptides 
from the human proteome 
(ensembl;  7·105 peptides)

Search space of tryptic 
peptides from iso-electric 

point fractionation of an six 
frame translation of the 

human genome
(106 peptides)

[Branca et al. NMeth 2014]



Conclusions

• Shotgun proteomics is currently the most accurate 
technique to analyze protein content of biological 
mixtures; detect protein complexes; and to detect 
and localize post translational modifications

• There is a large need of statistical and bioinformatical 
method development and education

• There are ample amount of data available waiting for 
your even more advanced analysis
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