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Exponential Families

The family of distributions with densities (w.r.t. to a σ-finite
measure µ) on X defined by

f (x | θ) = C (θ)h(x)eR(θ)·T (x)

is called an exponential family, where

C (θ) and h(x) are functions from Θ and X to R+,

R(θ) and T (x) are functions from Θ and X to Rk ,

R(θ) · T (x) is a scalar product in Rk , i.e.,

R(θ) · T (x) =
k

∑
i=1

Ri (θ) · Ti (x)
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Exponential Families: Role of µ

The σ-finite measure µ appears as follows:

1 = C (θ)
∫
X

h(x)eR(θ)·T (x)dµ(x).

C (θ) =
1∫

X h(x)eR(θ)·T (x)dµ(x)
.

N :=
{

θ|
∫
X

h(x)eR(θ)·T (x)dµ(x) < ∞
}

N is called the natural parameter space.
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EXAMPLES OF EXPONENTIAL FAMILIES: Be(θ)

f (x |θ) = θx · (1− θ)1−x . x = 0, 1

We write
f (x |θ) = C (θ)eR(θ)·x ,

where

C (θ) = e log 1−θ, T (x) = x , R(θ) = log
θ

1− θ
, h(x) = 1.

TK Modern Methods of Statistical Learning sf2935



EXAMPLES OF EXPONENTIAL FAMILIES: N(µ, σ2)

x (n) = (x1, x2, . . . , xn), xi I.I.D. ∼ N(µ, σ2).

f (x (n)|µ, σ2) =
1

σn (2π)n/2
e−

1
2σ2 ∑n

i=1(xi−µ)2

=
1

(2π)n/2
σ−ne−

nµ2

2σ2 e−
1

2σ2 ∑n
i=1 x

2
i +

µ

σ2 nx .
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EXAMPLES OF EXPONENTIAL FAMILIES: N(µ, σ2)

f (x (n)|µ, σ2) =
1

(2π)n/2
σ−ne−

nµ2

2σ2 e−
1

2σ2 ∑n
i=1 x

2
i +

µ

σ2 nx .

C (θ) = σ−ne−
nµ2

2σ2 , h(x) =
1

(2π)n/2
.

R(θ) · T
(

x (n)
)
= R1(θ)T1

(
x (n)

)
+ R2(θ)T2

(
x (n)

)
T1

(
x (n)

)
=

n

∑
i=1

x2
i , T2

(
x (n)

)
= nx

R1(θ) = −
1

2σ2
, R2(θ) =

µ

σ2
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Exponential Families & Sufficient Statistics (1)

In an exponential family there exists a sufficient statistic of
constant dimension (i.e., not depending on n) for any I.I.D. sample

x1, x2, . . . , xn ∼ f (x |θ) .

This means that

f (x1|θ) · f (x2|θ) · . . . · f (xn|θ)

= C (θ)n
n

∏
i=1

h(xi )e
R(θ)·∑n

i=1 T (xi )
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Exponential Families & Sufficient Statistics (2)

C (θ)n ·
n

∏
i=1

h(xi ) · eR(θ)·∑n
i=1 T (xi )

where
n

∑
i=1

T (xi ) ∈ X

is a sufficient statistic (explained next ⇒).

TK Modern Methods of Statistical Learning sf2935



Sufficient Statistic: A General Definition

For x ∼ f (x |θ), a function T of x is called a sufficient statistic
(for θ), if the distribution of x conditional on T (x) does not
depend on θ.

f (x |T , θ) = f (x |T )

Bayesian definition:
π (θ|x) = f (T , θ)
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Sufficient Statistic: Example

x (n) = (x1, x2, . . . , xn), xi I.I.D. ∼ Be(θ).

f (x (n)|θ) = C (θ)n
n

∏
i=1

eR(θ)·xi = C (θ)neR(θ)∑n
i=1 t(xi )

= θt(1− θ)n−t

We know that
n

∑
i=1

t (xi ) ∼ Bin (θ, n)
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Sufficient Statistic: Example (contn’d)

Since t = t (xi ) is determined by x (n),

f (x (n)|θ, t) =
f (x (n), t|θ)

f (t | θ)

=
θt(1− θ)n−t(

n
t

)
θt(1− θ)n−t

=
1(
n
t

)
which does not depend on θ, ∑n

i=1 t (xi ) is sufficient.

TK Modern Methods of Statistical Learning sf2935



Natural Exponential Families (1)

If
f (x | θ) = C (θ)h(x)eθ·x

where Θ ⊆ Rk and X ⊆ Rk , the family is said to be natural .
Here θ · x is inner product on Rk .
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Natural Exponential Families (2)

f (x | θ) = h(x)eθ·x−ψ(θ)

where
ψ (θ) = − log C (θ).
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Natural Exponential Families: Poisson Distribution

f (x | λ) = e−λ λx

x !
, x = 0, 1, 2, . . . ,

=
1

x !
eθx−eθ

ψ (θ) = eθ, θ = log λ, h(x) =
1

x !
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Mean in a Natural Exponential Family

If Eθ [x ] denotes the mean (vector) of x ∼ f (x |θ) in a natural
family, then

Eθ [x ] =
∫
X

xf (x | θ) dx = ∇θψ (θ) .

where Θ ∈ int(N ) and X ⊆ Rk .
Proof: ∫

X
xf (x | θ) dx = e−ψ(θ)

∫
X

h(x)xeθ·xdx .
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Mean in a Natural Exponential Family

e−ψ(θ)
∫
X

h(x)xeθ·xdx = e−ψ(θ)
∫
X

h(x)∇θeθ·xdx

= e−ψ(θ)∇θ

∫
X

h(x)eθ·xdx = e−ψ(θ)∇θ
1

C (θ)
=

= e−ψ(θ) (−∇θC (θ))

C (θ)2

= C (θ)
(−∇θC (θ))

C (θ)2
=

(−∇θC (θ))

C (θ)

= ∇θ(− log C (θ)) = ∇θψ (θ) .
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Mean in a Natural Exponential Family : Poisson
Distribution

f (x | λ) =
1

x !
eθx−eθ

ψ (θ) = eθ

Eθ [x ] =
d

dθ
ψ (θ) = eθ = λ.
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Conjugate Priors for Exponential Families: An Intuitive
Example

x (n) = (x1, x2, . . . , xn). xi ∼ Po(λ), I.I.D.,

f
(
x (n) | λ

)
= e−nλ λ∑n

i=1 xi

∏n
i=1 xi !

The likelihood is

l
(

λ|x (n)
)

∝ e−nλλ∑n
i=1 xi

This suggests the conjugate density as the density of the Gamma distribution, which is of the form

π (λ) ∝ e−βλλα−1

and hence

π
(

λ|x (n)
)

∝ e−λ(β+n)λ∑n
i=1 xi+α−1
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Conjugate Family of Priors for Exponential Families

Consider the natural exponential family

f (x | θ) = h(x)eθ·x−ψ(θ).

Then the conjugate family is given by

π (θ) = ψ (θ|µ, λ) = K (µ, λ) eθ·µ−λψ(θ)

and the posterior is
ψ (θ|µ + x , λ + 1)
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Conjugate Priors for Exponential Families: Proof

Proof: By Bayes’ rule

π (θ|x) = f (x | θ)π (θ)

m(x)

We have

f (x | θ)π (θ) = h(x)eθ·x−ψ(θ)ψ (θ|µ, λ)

= h(x)K (µ, λ) eθ·(x+µ)−(1+λ)ψ(θ)
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Conjugate Priors for Exponential Families: Proof

m(x) =
∫

Θ
f (x | θ)π (θ) dθ =

= h(x)K (µ, λ)
∫

Θ
eθ·(x+µ)−(1+λ)ψ(θ)dθ

= h(x)K (µ, λ)K (x + µ, λ + 1)−1

as ψ is a density on Θ.
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Conjugate Priors for Exponential Families: Proof

π (θ|x) = h(x)K (µ, λ) eθ·(x+µ)−(1+λ)ψ(θ)

h(x)K (µ, λ)K (x + µ, λ + 1)−1

= K (x + µ, λ + 1) eθ·(x+µ)−(1+λ)ψ(θ),

which shows that the posterior belongs to the same family as the
prior and that

π (θ|x) = ψ (θ|µ + x , λ + 1)

as claimed.
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Conjugate Priors for Exponential Families

The proof requires that

π (θ) = ψ (θ|µ, λ) = K (µ, λ) eθ·µ−λψ(θ)

is a probability density on Θ. The conditions for this are given in
exercise 3.35.
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A Mean for Exponential Families

We have the following properties:

if π (θ) = K (xo , λ) eθ·xo−λψ(θ) then

ξ(θ) =
∫

Θ
Eθ [x ]π (θ) dθ =

xo
λ

This has been proved by Diaconis and Ylvisaker (1979). The proof
is not summarized here.
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Posterior Means with Conjugate Priors for Exponential
Families

if π (θ) = K (µ, λ) eθ·µ−λψ(θ) then∫
Θ

Eθ [x ]π
(

θ|x (n)
)

dθ =
µ + nx

λ + n

This follows from the preceding, as shown by Diaconis and
Ylvisaker (1979).
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Mean of a Predictive Distribution

∫
Θ

Eθ [x ]π
(

θ|x (n)
)

dθ =
∫

Θ

∫
X

xf (x |θ) dxπ
(

θ|x (n)
)

dθ

(by Fubini’s theorem)

=
∫
X

x
∫

Θ
f (x |θ)π

(
θ|x (n)

)
dθdx

(by definition in lecture 9 of sf3935)

=
∫
X

xg(x |x (n))dx

the mean of the predictive distribution.
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Mean of a Predictive Distribution

Hence if conjugate priors for exponential families are used, then∫
X

xg(x |x (n))dx =
µ + nx

λ + n

is the mean of the corresponding predictive distribution. This
suggests µ and λ as ’virtual observations’.
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Laplace’s Prior

P.S. Laplace1 formulated the principle of insufficient reason to
choose a prior as a uniform prior. There are drawbacks in this.
Consider Laplace’s prior for θ ∈ [0, 1]

π (θ) =

{
1 0 ≤ θ ≤ 1
0 elsewhere,

Then consider
φ = θ2.

1
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Laplace.html
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Laplace’s Prior

We find the density of φ = θ2. Take 0 < v < 1.

Fφ(v) = P (φ ≤ v) = P
(
θ ≤
√

v
)
=
∫ √v

0
π (θ) dθ

=
√

v .

fφ(v) =
d

dv
Fφ(v) =

d

dv

√
v =

1

2

1√
v

which is no longer uniform. But how come we should have
non-uniform prior density for θ2 when there is full ignorance about
θ ?
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Jeffreys’ Prior: the idea

We want to use a method (M) for choosing a prior density with the
following property:
If ψ = g (θ), g a monotone map, then the density of ψ given by the
method (M) is

πΨ(ψ) = π
(

g−1(ψ)
)
· | d

dψ
g−1 (ψ) |

which is the standard probability calculus rule for change of variable in a

probability density.
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Jeffreys’ Prior

We shall now describe one method (M), i.e., Jeffreys’ prior.
In order to introduce Jeffreys’ prior we need first to define Fisher
information, which will be needed even for purposes other than
choice of prior.
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Fisher Information of x

A parametric model x ∼ f (x |θ), where f (x |θ) is differentiable
w.r.t to θ ∈ R, we define I (θ), Fisher information of x , as

I (θ) =
∫
X

(
∂ log f (x |θ)

∂θ

)2

f (x |θ) dµ(x)

Conditions for existence of I (θ) are given in Schervish (1995), p.
111.
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Fisher Information of x : An Example

I (θ) = Eθ

[(
∂ log f (X |θ)

∂θ

)2
]

Example:

f (x |θ) = 1

σ
√

2π
e−(x−θ)2/2σ2

,

σ is known.
∂ log f (x |θ)

∂θ
=

(x − θ)

σ2

I (θ) = E

[
(x − θ)2

σ4

]
=

σ2

σ4
=

1

σ2
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Fisher Information of x , θ ∈ Rk

x ∼ f (x |θ), where f (x |θ) is differentiable w.r.t to θ ∈ Rk , we
define I (θ), Fisher information of x , as the matrix

I (θ) = (Iij (θ))
k,k
i ,j=1

Iij (θ) = Covθ

(
∂ log f (x |θ)

∂θi
,

∂ log f (x |θ)
∂θj

)
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Fisher Information of x (n)

Same parametric model xi ∼ f (x |θ), I.I.D., x (n) = (x1, x2, . . . , xn).

f
(

x (n)|θ
)
= f (x1|θ) · f (x2|θ) · . . . · f (xn|θ)

Fisher information of x (n) is

Ix (n) (θ) =
∫
X

∂ log f
(

x (n)|θ
)

∂θ

2

f
(

x (n)|θ
)

dµ
(

x (n)
)

= n · I (θ) .
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Fisher Information of x : another form

A parametric model x ∼ f (x |θ), where f (x |θ) is twice
differentiable w.r.t to θ ∈ R. If we can write

d

dθ

∫
X

(
∂ log f (x |θ)

∂θ

)
f (x |θ) dµ(x) =

=
∫
X

∂

∂θ

(
∂ log f (x |θ)

∂θ

)
f (x |θ) dµ(x),

then

I (θ) = −
∫
X

(
∂2 log f (x |θ)

∂θ2

)
f (x |θ) dµ(x)
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Fisher Information of x , θ ∈ Rk

x ∼ f (x |θ), where f (x |θ) is differentiable w.r.t to θ ∈ Rk , then
under some conditions

I (θ) =

[(
−Eθ

(
∂2 log f (x |θ)

∂θi∂θj

))
ij

]k,k

i ,j=1
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Fisher Information of x : Natural Exponential Family

For a natural exponential family

f (x | θ) = h(x)eθ·x−ψ(θ)

∂2 log f (x |θ)
∂θi∂θj

= −∂2ψ (θ)

∂θi∂θj

so no expectation needs to be computed to obtain I (θ).
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Jeffreys’ Prior defined

π (θ) :=

√
I (θ)∫

Θ

√
I (θ)dθ

assuming that the standardizing integral in the denominator exists.
Otherwise the prior is improper.
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Jeffreys’ Prior is a method (M)

Let ψ = g (θ), g a monotone map. The prior π(θ) is Jeffreys’ prior. Let us compute the prior density πΨ(ψ) for ψ:

πΨ(ψ) = π
(
g−1(ψ)

)
· | d

dψ
g−1 (ψ) |

∝

√√√√Eθ

[(
∂ log f (X |θ)

∂θ

)2
]
| d

dψ
g−1 (ψ) |

=

√√√√√E
g−1((ψ)

( ∂ log f
(
X |g−1 (ψ)

)
∂θ

d

dψ
g−1 (ψ)

)2


=

√√√√√E
g−1(ψ)

( ∂ log f
(
X |g−1 (ψ)

)
∂ψ

)2
 = I (ψ)

Hence the prior for ψ is the Jeffreys’ prior.
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Maximum Entropy Priors

We are going to discuss maximum entropy prior densities. We need
a new definition: Kullback’s Information Measure.
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Kullback’s Information Measure

Let f (x) and g (x) be two densities. Kullback’s information
measure I (f ; g) is defined as

I (f ; g) :=
∫
X

f (x) log
f (x)

g (x)
dµ(x).

We intertpret log
f (x)

0 = ∞, 0 log 0 = 0. It can be shown that
I (f ; g) ≥ 0.
Kullback’s Information Measure does not require the same kind of
conditions for existence as the Fisher information.
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Kullback’s Information Measure: Two Normal
Distributions

Let f (x) and g (x) be densities for N
(
θ1; σ2

)
, N
(
θ2; σ2

)
,

respectively.
Then

log
f (x)

g (x)
=

1

2σ2

[
(x − θ2)

2 − (x − θ1)
2
]

I (f ; g) =
1

2σ2
Eθ1

[
(x − θ2)

2 − (x − θ1)
2
]

=
1

2σ2

[
Eθ1 (x − θ2)

2 − σ2
]

.
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Kullback’s Information Measure: Two Normal
Distributions

We have
Eθ1

(x − θ2)
2 = Eθ1

(
x2
)
− 2θ2Eθ1

(x) + θ2
2

= σ2 + θ2
1 − 2θ2θ1 + θ2

2 = σ2 + (θ1 − θ2)
2 .

Then

I (f ; g ) =
1

2σ2

[
σ2 + (θ1 − θ2)

2 − σ2
]
=

=
1

2σ2
(θ1 − θ2)

2 .

I (f ; g) =
1

2σ2
(θ1 − θ2)

2
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Kullback’s Information Measure: Natural exponential
densities

Let fi (x) = h(x)eθi ·x−ψ(θi ), i = 1, 2. Then

I (f1; f2) = (θ1 − θ2) · ∇θψ (θ1)− (ψ (θ1)− ψ (θ2))
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Kullback’s Information Measure for Prior Densities

Let π (θ) and πo (θ) be two densities on Θ

I (π; πo) =
∫

Θ
π (θ) log

π (θ)

πo (θ)
dv(θ).

Here v is another σ-finite measure.
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Maximum Entropy Prior (1)

Find π (θ) so that

I (π; πo) :=
∫

Θ
π (θ) log

π (θ)

πo (θ)
dv(θ).

is maximized under the constraints (on moments, quantiles e.t.c.)

Eπ [gk(θ)] = ωk .

The method is due to E. Jaynes, see, e.g., his Probability Theory:
The Logic of Science
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Maximum Entropy Prior (1)

Find π (θ) so that

I (π; πo) :=
∫

Θ
π (θ) log

π (θ)

πo (θ)
dv(θ).

is maximized under the constraints (on moments, quantiles e.t.c.)

Eπ [gk(θ)] = ωk .

Maybe Winkler’s experiments could be redone like this: the
assessor gives several ωk , and maximum entropy π.
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Maximum Entropy Prior (2)

This gives, by use of calculus of variation,

π∗ (θ) =
e∑k λkgk (θ)πo (θ)∫
e∑k λkgk (η)πo (dη)

,

where λk are derived from Lagrange multipliers.
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