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1 Introduction

This document contains a set of questions/problems on the topics treated in
sf2935 Modern Methods of Statistical Learning during the period 2 of 2017.
Five of these will be selected to constitute the written exam on Thursday the
12th of January, 2017, 08.00 - 13.00.

The answers/solutions can be produced by study of the relevant chapters
in the course textbook An introduction to Statistical Learning, by G. James,
D. Witten, T. Hastie, R. Tibshirani. Springer Verlag, 2013, and by similar
study of the lecture slides on the webpage
https://www.math.kth.se/matstat/gru/sf2935/statlearnmaterial2016

In addition, some proficiency in manipulating basic calculus, probability, lin-
ear algebra and matrix calculus is required.

This same set of questions (maybe some will be removed and new added)
will be valid in the re-exam. Hence we shall NOT provide a solutions manual.

2 The Assignments

1. Suppose that we have a training set consisting of a set of points x1, . . . ,xn
and real values yi associated with each point xi. We assume that

yi = f(xi) + ε,

where the noise, ε, has zero mean and variance σ2 .

We want to find a function f̂(x), that approximates the true function
y = f(x). We make ”as well as possible” precise by measuring the
mean squared error between y and f̂(x) which we want to be minimal
both for x1, . . . ,xn.

We can decompose its expected error on an unseen sample x as follows:

E
[(
y − f̂(x)

)2]
= Bias

[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2 (2.1)

(2.2)

Where:

Bias
[
f̂(x)

]
= E

[
f̂(x)

]
− f(x) (2.3)
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and

Var
[
f̂(x)

]
= E

[(
f̂(x)− E[f̂(x)]

)2]
(2.4)

a) Deduce these equations.

b) Write a small essay on the Bias -Variance Trade-Off in terms of
these equations.

2. Rosenblatt’s perceptron algorithm is written in a pseudocode as

1: w0 ← 0, b0 ← 0, k ← 0 R ← max1≤i≤l ‖xi‖
2: repeat
3: for i = 1 to l do
4: if yi (� w,xi � +bk) ≤ 0 then
5: wk+1 ← wk + yixi,

bk+1 ← bk + yiR2,
k ← k + 1

6: end if
7: end for
8: until no mistakes made in the loop
9: return wk, bk, where k is the number of mistakes.

a) Explain in plain words what the algorithm does.

b) Formulate the Perceptron Convergence Theorem (Novikoff 1962)
and interpret it in terms of the perceptron algorithm and its ge-
ometry.

3. Explain the concept of separating hyperplane classification. Specifi-
cally, consider the case where the feature space X is p-dimensional and
the output space is Y = {−1, 1}. Describe how a separating hyperplane
is defined and how such a (generic) hyperplane can be used for classifi-
cation. Define the maximal margin hyperplane and describe in some de-
tail how it can be found for a given training set {(x1, y1), . . . , (xn, yn)}.

4. Consider a p-dimensional feature space X , output space Y = {−1, 1}
and a training set {(x1, y1), . . . , (xn, yn)}. Define the support vector
classifier; you must explain all the quantities involved. What is the
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difference between the support vector classifier, i.e. the associated hy-
perplane, and the maximal margin classifier? What does the term
“support vector” refer to and why is this an important concept for
this particular classifier? Lastly, describe how you could achieve a
non-linear decision boundary using a support vector classifier; give an
example. What are potential drawbacks of this approach?

5. Consider a p-dimensional feature space X , output space Y = {−1, 1}
and a training set {(x1, y1), . . . , (xn, yn)}. Define the concept of a sup-
port vector machine and explain all quantities involved. Give at least
two non-trivial examples of various instances of this classifier. De-
scribe the difference between a support vector machine and achieving
non-linear decision boundaries using a support vector classifier. How
does the cost parameter, C, in the definition of the support vector ma-
chine affect the resulting decision boundary? Lastly, describe one way
a support vector machine can be used in the setting of K > 2 classes.

6. Suppose x comes from one of two populations, Π1 with Np(µ1,Σ1) and
Π2 with Np(µ2,Σ2). If the respective density functions are denoted by
f1(x) and f2(x). Find the expression for the quadratic discriminator
Q, where

Q = ln

[
f1(x)

f2(x)

]
.

If Σ1 = Σ2, verify that Q becomes

(µ1 − µ2)
′Σ−1x− 1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2). (2.5)

7. Assume that Πi is Np(µi,Σ), i = 1, 2 and for the class prior probabili-
ties πi it hold that π1 = π2 = 1

2
. Specify the optimal misclassification

rate (OMR) for the linear discriminant function. Explain further the
relationship between the OMR and the Mahalanobis distance between
two populations.

8. Relationship between LDA and QDA: Suppose that observations within
each class are drawn from Np(µi,Σi), i = 1, . . . , C, i.e from C classes
with a class specific mean vector and a class specific covariance matrix.
In general, as the sample size n increases, does one expect the test
classification accuracy of QDA relative to LDA to improve, decline or
be unchanged. Motivate your answer.
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9. Suppose x0 comes from one of two populations, Π1 with Np(µ1,Σ) and
Π2 with Np(µ2,Σ). Suppose also that you have a training data from
both populations. Form the sample based linear discriminant function
and specify the classification procedure for assigning x0 to one of two
populations.

What happens to Fisher’s linear discriminant if the sample size n is
smaller than the dimensionality p?

10. Explain the idea of k nearest neighbors, kNN, classifier. Derive the
classification rule and explain the effect of k choice on the classification
accuracy using both test and training errors.

11. State the multiple linear regression model and form the solution to the
ordinary least-squares (OLS) parameter estimation problem. Assume
further that the deviations of the response variable around its expecta-
tion are additive and Gaussian. Specify the distributional properties of
the OLS estimators for this case and use them to form the test proce-
dure for evaluation the partial effect of adding a covariate to the model.
Add more assumptions if needed.

12. Explain the problem of collinearity in the linear regression model and
suggest solutions.

13. The bootstrap approach provides an all-purpose method for computing
standard errors. For any estimator θ̂ = θ̂(x) we can write

Var∗(θ̂) =
1

nn − 1

nn∑
i=1

(
θ̂∗i −

¯̂
θ∗
)2
,

where ∗ denotes a bootstrapped or re-sampled value, θ̂∗i is the estimator
calculated from the i re-sample and

∑nn

i=1 θ̂
∗
i is the mean of the re-

sampled values. The variance formula above is applicable to virtually
any estimator. But how do we know that it is a good method for
evaluation the performance of estimators? Explain why the method is
good using the following steps: for a sample x = (x1, . . . , xn) and an
estimate θ̂ = θ̂(x1, . . . , xn) select b bootstrap samples and calculate

Var∗b(θ̂) =
1

b− 1

b∑
i=1

(
θ̂∗i −

¯̂
θ∗
)2
.
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Explain why we have the convergence result

Var∗b(θ̂)→ Var∗(θ̂) as b→∞.

14. Consider the natural exponential family

f (x | θ) = h(x)eθ·x−ψ(θ).

Here θ · x is inner product on Rk.

a) Consider the prior densities given by

π (θ) = ψ (θ|µ, λ) = K (µ, λ) eθ·µ−λψ(θ).

Find the the posterior as

ψ (θ|µ+ x, λ+ 1) .

Hence the given family of priors is a conjugate family for f (x | θ).
You are permitted to work formally, i.e., not checking the condi-
tions for validity.

b) Let

f(x | θ) =
d∏
i=1

θxii (1− θi)1−xi ;xj ∈ {0, 1}; 0 ≤ θi ≤ 1.

θ = (θ1, θ2, . . . θd). Write this in a natural form and find the
conjugate family of priors.

15. Suppose
P (B|A) > P (B).

We interpret this as the statement that if A is true then B is more
likely. Formulate and prove the statements

If not-B is true, then A becomes less likely.

If B is true, A becomes more likely.

If not-A is true, then B becomes less likely.
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16. We say that the discrete r.v.s X and Y are conditionally independent
given Z if and only if for all x,y, z

P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z).

Show that it follows from this definition that if X and Y are condition-
ally independent given Z, then

P (Y = y | X = x, Z = z) = P (Y = y | Z = z) for all x,y,z.

17. In the text D. Poole & A. Mackworth: Artificial Intelligence: Founda-
tions of Computational Agents, Cambridge University Press, 2010, we
quote the following:

The idea of Bayesian learning is to compute the posterior
probability distribution of the target features of a new exam-
ple conditioned on its input features and all of the training
examples.

Suppose a new case has inputs X = x and has target features,
Y ; the aim is to compute P (Y |X = x∧ e), where e is the set
of training examples. This is the probability distribution of
the target variables given the particular inputs and the exam-
ples. The role of a model is to be the assumed generator of
the examples. If we let M be a set of disjoint and covering
models, then reasoning by cases and the chain rule give

P (Y |x ∧ e) =
∑
m∈M

P (Y ∧m|x ∧ e)

=
∑
m∈M

P (Y |m ∧ x ∧ e)× P (m|x ∧ e)

=
∑
m∈M

P (Y |m ∧ x)× P (m|e).

The first two equalities are theorems from the definition of
probability. The last equality makes two assumptions: the
model includes all of the information about the examples that
is necessary for a particular prediction (i.e., P (Y |m∧x∧e) =
P (Y |m ∧ x), and the model does not change depending on
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the inputs of the new example (i.e., P (m|x ∧ e) = P (m|e).
This formula says that we average over the prediction of all
of the models, where each model is weighted by its posterior
probability given the examples.

Obviously, the terminology above does not fully conform to the ter-
minology made familiar in standard probability and statistics courses
(abridged as sanstat below).

a) What does ∧ represent in sanstat?

b) Verify the first two equalities by the rules of sanstat.

c) What is ”reasoning by cases” in sanstat?

d) How would you interpret in sanstat ”the model includes all of the
information about the examples that is necessary for a particular
prediction” ?

e) How would you interpret in sannstat ”the model does not change
depending on the inputs of the new example”?

d) What is the meaning of ”the posterior probability distribution of the
target features of a new example conditioned on its input features
and all of the training examples”?

18. Let

f(x|θ) =

{
1
θ

0 ≤ x ≤ θ
0 elsewhere,

where we know that 0 ≤ θ ≤ 10. We take for θ the prior density

π(θ) =

{
1
10

0 ≤ θ ≤ 10
0 elsewhere.

Asssume now that you have a data set D with four observations of x,
and that 8 = maxD, i.e., 8 is largest value you have observed.

a) Show that the posterior distribution π(θ|D) is

π(θ|D) =

{
c · 1

θ4
8 ≤ θ < 10

0 elsewhere,

where you need not find the value of c.
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b) Show that the predictive distribution

f(x | D) =

∫ 10

0

f(x|θ)π(θ|D)dθ

is given by (c as in a))

f(x | D) =


c
4
·
(

1
x4
− 1

104

)
8 ≤ x < 10

c
4
·
(

1
84
− 1

104

)
0 ≤ x ≤ 8

0 elsewhere.

c) How would you comment the result in b)? Recall from first courses
that the maximum liklelihood estimate of θ based on D is

θ̂MLE = 8

so the maximum likelihood method yields the probability density
for future data

f(x | θ̂MLE) =

{
1
8

0 ≤ x ≤ 8
0 elsewhere.

19. Bayes Factor & Bayesian Model Comparison & Occam’s Razor

Let
Mi = {pi (x|θi) , πi(θi), θ0 ∈ Θi}

be two Bayesian model families.

a) What is the marginal likelihood pi (x|Mi) (of data) ?

b) How is the Bayes factor defined? Show that it can be written as

B01 =
p0 (x|M0)

p1 (x|M1)
.

c) What is Occam’s Razor?

d) SupposeM0 is a more complex model family thanM1, in the sense
thatM0 has more parameters. How does Bayes factor implement
Occam’s Razor?
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20. Let x = (x1, x2, . . . , xd) be a binary vector, i.e., xi ∈ [0, 1], i ∈ {1, . . . , d}.
There are two classes c0 and c1 and corresponding probability mass
functions

p(x|θj, cj) =
d∏
i=1

θxiij (1− θij)1−xi ;xi ∈ {0, 1}; 0 ≤ θij ≤ 1,

where θij = P (Xi = 1|cj) and

θj = (θ1j, . . . , θdj).

Then

p(cj | x) =
p(x|cj)πj

C
,

where π1(= 1 − π0) is the prior probability of c1, and π0 is the prior
probability of c0. C is the normalization constant that does not depend
on c1 and c0.

Let Y be a r.v. such that

Y =

{
c1 with probability p(c1 | x)
c0 with probability p(c0 | x).

Show that Y follows a logistic regression and find P (Y = c1) in terms
of the sigmoid function.

21. Let
Y ∗ = βTX + ε

where βTX = β0 + β1X1 + β2X2 + . . . + βpXp and ε is a r.v. with the
cumulative distribution function

P (ε ≤ x) =
1

1 + e−x
= σ(x).

Define Y as

Y =

{
1 if Y ∗ > 0 i.e. − ε < βT ·X,
−1 otherwise.

Verify that Y follows a logistic regression w.r.t. X.
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22. Explain why the OLS parameter estimation in multiple regression model
is not applicable when the dimensionality of the vector of independent
variables, p exceeds the sample size, n. Suggest alternative estimation
approaches and motivate why they work well for p > n settings.

23. Explain the idea of the ridge regression and Lasso regression and the
difference between these two approaches. Which of this two approaches
behaves as a shrinkage method and which one can directly perform vari-
able selection? Motivate your explanations by sketching the graph with
profiles of ridge- and Lasso coefficient estimators as tuning parameter
is varied, and explain the difference in profile shapes.

24. Suppose that yi = β0+
∑p

j=1 xijβj+εi, where ε1, . . . εn are independent

and identically distributed with mean zero and constant variance σ2.
State the ridge- and Lasso problem in two forms, using the shrinkage
penalty with parameter λ ≥ 0 and using the explicit size constraint
s on the parameter estimation. Explain the relationship between the
parameters λ and s. Define the ridge and Lasso estimates of parameters
β1, . . . , βp.

25. Suppose that yi = β0+
∑p

j=1 xijβj+εi, where ε1, . . . εn are independent

and identically distributed with mean zero and constant variance σ2.
The ridge coefficients minimize a penalized residual sum of squares

β̂ridge = arg min

{
n∑
i=1

(yi − β0 −
p∑
i=j

xijβj)
2 + λ

p∑
j=1

β2
j

}
,

where λ ≥ 0 controls the amount of shrinkage. Rewrite this criterion in
matrix form and show that the ridge regression solution can expressed
as

β̂ridge = (X′X + λI)
−1

X′y,

where the input matrix X is centered, i.e. has p columns and I is the
p× p identity matrix.

26. Explain the idea of k-fold cross-validation procedure in relation to esti-
mation of the test and training error in the supervised learning. What
are advantages and disadvantages of k-fold cross-validation relative to
the validation set approach and leave-one-out cross-validation?
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27. Explain the conceptual idea of parametric and non-parametric boot-
strap and its application to quantifying uncertainty in statistical learn-
ing. Give examples. Suppose you have a sample x = (x1, . . . , xn) and
an estimator θ̂ = θ̂(x1, . . . , xn). Derive the bootstrap based estimator
of standard error, SE(θ̂).

28. Let X t =
{
x(l)
}t
l=1

, where x(l) ∈ Rd. be a training set. Let D(x,y) be

a metric on Rd ×Rd.

a) Give in detail the steps of the k-means algorithm. What is the indata
to the algorithm?

b) What is the definition of a Voronoi region, and how are Voronoi regions
related to k-means clustering?

29. We have a statistical model that generates a set X = x of observed
data, a set of unobserved latent data values Z, and a vector of unknown
parameters θ, along with a likelihood function

L(θ; X = x,Z = i) = P (Z = i)pX(x|θi,Z = i).

Hence θi indicates the group of parameters in the conditional distribu-
tion of X, when conditioning on Z = i, and

θ = (θ1,θ2, . . .θk).

Let L(θ;x) be the likelihood function when Z has been marginalized
out.

L(θ; X = x) = pX(x|θ) =
k∑
i=1

P (Z = i)pX(x|θi)

The EM- algorithm (Expectation-Maximization -algorithm) seeks to
find the MLE of the marginal likelihood L(θ;x) by iteratively applying
the following two steps:

Expectation step (E step): Calculate the expected value of the log
likelihood function, with respect to the conditional distribution of Z
given X under the current estimate of the parameters θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ; X,Z)]
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Maximization step (M step): Find the parameter that maximizes this
quantity:

θ(t+1) = arg max
θ

Q(θ|θ(t)) .

Set θ(t) ← θ(t+1), go to E step and continue until convergence.

This was the generic description. Consider now the situation where
k = 2, −∞ < θi <∞ for i = 1, 2, and

pX(x|θi,Z = i) =
1√
2π
e−

1
2
(x−θi)

2

, i = 1, 2,−∞ < x <∞,

P (Z = 1) = λ1 and P (Z = 2) = λ2 = 1− λ1.

a) Assume that you have a training set of X t = {x(i)}ti=1 regarded
as t i.i.d. samples drawn from fX(x|θ). The corresponding values
Z(i) have not been observed. Find the Sundberg equations of the
EM-algorithm for θ = (θ1,θ2).

b) Explain how this can be extended to a method of classification or
unsupervised clustering and relate the method to k-means clus-
tering. Why should this be called ’natural’ k-means clustering?

30. The LDA is often taken as being synonymous with the term Fisher’s
linear discriminant. But Fisher’s original study 1 of statistical discrim-
ination actually establishes a different discriminant, which does not
make some of the assumptions of LDA such as normally distributed
classes or equal class covariances. We shall now take a look at the
original concept. First some background.

1Fisher, R. A. (1936): The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics 7 (2): 179−188.
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Edgar Anderson collected the data to quantify the morphologic vari-
ation of Iris flowers of three related species. Two of the three species
were collected in ” all from the same pasture, and picked on the same
day and measured at the same time by the same person with the same
apparatus”.

The data set consists of 150 samples from each of three species of Iris
(Iris setosa, Iris virginica and Iris versicolor). Four features were mea-
sured from each sample: the length and the width of the sepals and
petals, in centimetres. The data set can be downloaded at

https://archive.ics.uci.edu/ml/datasets/Iris

The Fisher discriminant invented for clustering/dealing with this data
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set is based on projection of d-dimensional data onto a line. The hope
is that these projections are separated by class. Thus the line is to
be oriented to maximize this class separation. This line is taken to go
through origin in Rd.

The wTx(=
∑d

i=1wixi) is the component of x in the direction of w.

We try to find w so that the separation criterion (two classes)

J (w) =
µ1 − µ2

σ2
1 + σ2

2

is maximized, where µ
i
,i = 1, 2 are two class centers in Rd, and

µi = wTµ
i
, σ2

i = wTΣiw,

and Σi is the covariance matrix of class i.

Here the notation covers the cases, where µ
i

is known or is a
class-wise sample mean

µ
i

=

 x̄1i
...
x̄di

 =
1

n

n∑
j=1

xji

and Σi is known or is a class-wise sample covariance matrix

Σi =
1

n− 1

n∑
j=1

(xji − µi)(xji − µi)
T.

The criterion J (w) can be maximized by standard methods and these
give

w∗ = (Σ1 + Σ2)
−1
(
µ
1
− µ

2

)
, (2.6)

and the optimal projection PF (x) is

PF (x) =
(
w∗

T

x
) w∗

‖w∗‖2
(2.7)

A set of simulated two dimensional Gaussian data and their projections
onto a line (oriented in Northwest-southeast direction, only segmentally
depicted) are given in the figure below:
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Fisher’s linear discriminant can actually be arbitrarily bad ! However,
it has far-reaching (kernelized) generalizations as support vector ma-
chines.

a) Is this an early (1936) example of a method of statistical learning?
If it is, what sort of learning is being done? If it is not, where does
the difference lie?
Hint: Be careful, the illustration of hierarchic clustering by Iris
data in Lecture 17 need not lead here to the appropriate thinking.

b) Derive (2.6) and (2.7).
Aid: It is useful to try to do this by oneself, of course. If, however,
external assistance is to be summoned up, a Google search with
a phrase like tutorial data reduction linear discriminant analysis
will very likely produce helpful documents.

c) Interpret the nature of the optimized J (w∗). Compare with (2.5)
above.

31. We have four OTU’s x, y, z, w in this order. We have computed the
dissimilarity matrix 

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45


This means that, e.g., the dissimilarity between x and y is 0.3 and
the dissimilarity between y and w is 0.8. Let di,j denote an array in
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this matrix. The hierarchical clustering method called single linkage
(SLINK) works as follows:

i Find
(i∗, j∗) = arg min

i,j
di,j

ii Join i∗, j∗

iii di,i∗∪j∗ = min (di,i∗ , di,j∗).

a) Use SLINK to cluster hierarchically the four OTU’s and sketch
the resulting dendrogram. Indicate on the plot the order in which
the fusion occurs.

b) If we cut the dendrogram so that two clusters results, which OTU’s
are in each cluster ?

c) Check the ultrametric property on this dendrogram.

32. P is a finite set. The cardinality | P | of P is ≥ 2. The elements of
P will denoted by a, b, c, . . . , p, . . . , x, y. The elements are abstract at
this juncture, but are for the sake of definiteness to be called operative
taxonomic units (OTUs).

• N is a finite positive integer.

• M(n) is a function defined on integers n in 0 . . . N and taking its
values in partitions of P , or, in the equivalence relations on P
such that the ’Woodger-Gregg’ axioms(a)-(c) hold:

(a) M(0) = {(p, p) | p ∈ P}.
(b) M(N) = P × P .

(c) 0 ≤ n ≤ m ≤ N ⇒ M(n) ⊆M(m).

We shall denote the set of equivalence classes in the image of M(n) by

P(n) = P/M(n). (2.8)

Each P(n) is a partition of P .

From this and from the properties (a)-(c) it follows that for n ≤ m

P(0) ≤ P(n) ≤ P(m) ≤ P(N),
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where ≤ is the usual order for partitions, i.e., P(n) ≤ P(m) means that
P(m) is a coarser partition of P than P(n). P(N) is the maximal ele-
ment and P(0) is the minimal element, and P(N) is the coarsest, where
all OTU’s are in a single set. P(0) is the the most refined partition
consisting of singletons. Clearly ≤ is a partial order and (P(n))Nn=0 is
a lattice. Now we introduce a technical conceptual aid, which is, called
taxon in a hierarchy.

Definition 2.1 Y is a taxon in the hierarchy (P , N,M), if there is an
integer n in 0, . . . , N such that

Y ∈ {(A, n) | A ∈ P(n)}.

Here (A, n) is an ordered pair. If Y is a taxon in a hierarchy, we say
that

Ext(Y ) = A,Rank(Y ) = n.

On occasion we shall also talk about the sets Ext(Y ) as extensions. In
this terminology, P(n) ≤ P(m) means that every extension of a taxon
in P(m) is a union of extensions in P(n).

Next we can introduce a map J(x, y) from pairs of OTU’s to {0 . . . N}.

Definition 2.2 Let x, y ∈ P and let Y be the taxon of lowest rank,
Rank(Y ), in the hierarchy (P , N,M) such that x, y ∈ Ext(Y ). Then
we set

J(x, y) = Rank(Y ). (2.9)

The definition presupposes that Y is unique, which holds by the prop-
erties of partitions. Due to this we can introduce lca(x, y), the least
common ancestor of x and y by

lca(x, y) = Ext(Y ), such that Rank(Y ) = J(x, y). (2.10)

• Show that J(x, y) is an ultrametric on P × P .

33. Describe the idea of CLINK in hierarchical clustering.
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34. Describe how to build a regression or decision tree using cost complexity
pruning. When building a classification tree using a cost function based
on, e.g., the Gini index or the cross-entropy, it may happen that a split
leaves two terminal nodes with the same predicted class. How is this
possible?

35. In the random forest approach, every node split considers cost function
minimization with respect to only a subset of m ≤ p randomly chosen
predictors (where p denotes the total number of predictors). Show that
the probability that a given predictor is not considered at a given split
is (p−m)/p. What is the rationale behind considering only a randomly
chosen subset of the predictors?
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